1887

Abstract

A 6·5 kb DNA fragment containing a chloramphenicol-resistance gene of ISP5230 was cloned in M252 using the high-copy-number plasmid vector pIJ702. The gene was located within a 2·4 kb I-I fragment of the cloned DNA and encoded an enzyme (chloramphenicol hydrolase) that catalysed removal of the dichloroacetyl moiety from the antibiotic. The deacylated product, -nitrophenylserinol, was metabolized to -nitrobenzyl alcohol and other compounds by enzymes present in M252. Examination of the genomic DNA from several sources using the cloned 6·5 kb I fragment from ISP5230 as a probe showed a hybridizing region in the DNA from 13s but none in the DNA from another chloramphenicol producer, NRRLB 3559. The resistance phenotype was not expressed when the 6·5 kb I fragment or a subfragment was subcloned behind the -promoter of plasmid pTZ18R in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-2-293
1990-02-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/2/mic-136-2-293.html?itemId=/content/journal/micro/10.1099/00221287-136-2-293&mimeType=html&fmt=ahah

References

  1. Ahmed Z. U., Vining L. C. 1983; Evidence for a chromosomal location of the genes coding for chloramphenicol production in Streptomyces venezuelae. . Journal of Bacteriology 154:239–244
    [Google Scholar]
  2. Betzler M., Dyson P., Schrempf H. 1987; Relationship of an unstable argG gene to a 5·7-kb amplifiable DNA sequence in Streptomyces lividans 66. Journal of Bacteriology 169:4804–4810
    [Google Scholar]
  3. Bibb M. J., Bibb M. J., Ward J.M.., Cohen S. N. 1985; Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. . Molecular and General Genetics 199:26–36
    [Google Scholar]
  4. Carter P., Bedouelle H., Winter G. 1985; Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Research 13:4431–4443
    [Google Scholar]
  5. Doull J. L., Vining L. C., Stuttard C. 1983; A cryptic plasmid in the chloramphenicol-producing actinomycete, Streptomyces phaeochromogenes. . FEMS Microbiology Letters 16:349–352
    [Google Scholar]
  6. Doull J., Ahmed Z., Stuttard C., Vining L. C. 1985; Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. Journal of General Microbiology 131:97–104
    [Google Scholar]
  7. Gil J. A., Hopwood D. A. 1983; Cloning and expression of a p-aminobenzoic acid synthetase gene of the candicidin-producing Streptomyces griseus. . Gene 25:119–132
    [Google Scholar]
  8. Gil J. A., Kieser H. M., Hopwood D. A. 1985; Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimyciniand its expression in Streptomyces and Escherichia coli. . Gene 38:1–8
    [Google Scholar]
  9. Hopwood D. A. 1967; Genetic analysis and genome structure in Streptomyces coelicolor. . Bacteriological Reviews 31:373–403
    [Google Scholar]
  10. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich:: John Innes Foundation.;
    [Google Scholar]
  11. Katz E., Thompson C. J., Hopwood D. A. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. . Journal of General Microbiology 129:2703–2714
    [Google Scholar]
  12. Kieser T. 1984; Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli. . Plasmid 12:19–36
    [Google Scholar]
  13. Lee Y.-H.W., Chen B.-F., Wu S.-Y., Leu W.-M., Lin J.-J., Chen C. W., Lo S. J. 1988; A trans-acting gene is required for phenotypic expression of a tyrosinase gene in Streptomyces. . Gene 65:71–81
    [Google Scholar]
  14. Malik V. S., Vining L. C. 1970; Metabolism of chloramphenicol by the producing organism. Canadian Journal of Microbiology 16:173–179
    [Google Scholar]
  15. Malik V. S., Vining L. C. 1971; Metabolism of chloramphenicol by the producing organism. Some properties of chloramphenicol hydrolase. Canadian Journal of Microbiology 17:1287–1290
    [Google Scholar]
  16. Malik V. S., Vining L. C. 1972; Chloramphenicol resistance in a chloramphenicol-producing Streptomyces. . Canadian Journal of Microbiology 18:583–590
    [Google Scholar]
  17. Mead D. A., Kemper B. 1988; Chimeric single-stranded DNA phage-plasmid cloning vectors. In Vectors, pp 85–102 Rodriguez R. L., Denhardt D. T. Edited by Toronto: Butterworths;
    [Google Scholar]
  18. Pongs O. 1979; Chloramphenicol. In Antibiotics,part I, Mechanism of Action of Antibacterial Agents, pp 526–42 Hahn F. E. Edited by New York: Springer Verlag;
    [Google Scholar]
  19. Rebstock M. C., Crooks H. M. Jr Controulis I., Bartz W. R. 1949; Chloramphenicol (chloromycetin). IV. Chemical studies. Journal of the American Chemical Society 71:2458–2462
    [Google Scholar]
  20. Schottel J. L., Bibb M. J., Cohen S. N. 1981; Cloning and expression in Streptomyces lividans of antibiotic resistance genes derived from Escherichia coli. . Journal of Bacteriology 146:360–368
    [Google Scholar]
  21. Schrempf H. 1982; Plasmid loss and changes within the chromosomal DNA of Streptomyces reticuli. . Journal of Bacteriology 151:701–707
    [Google Scholar]
  22. Shaw W. V. 1975; Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods in Enzymology 43:737–755
    [Google Scholar]
  23. Shaw W. V., Hopwood D. A. 1976; Chloramphenicol acetylation in Streptomyces. . Journal of General Microbiology 94:159–166
    [Google Scholar]
  24. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae:lysogeny and host specificity shown by phages SV1 and SV2. Journal of General Microbiology 128:115–121
    [Google Scholar]
  25. Suzuki T., Honda H., Katsumata R. 1972; Production of antibacterial compounds analogous to chloramphenicol by a n-paraffin-grown bacterium. Agricultural and Biological Chemistry 36:2223–2228
    [Google Scholar]
  26. Thompson C. J., Ward J. M., Hopwood D. A. 1982; Cloning of antibiotic resistance and nutritional genes in streptomycetes. Journal of Bacteriology 151:668–677
    [Google Scholar]
  27. Vining L. C. 1975; Chloramphenicol hydrolase. Methods in Enzymology 43:734–737
    [Google Scholar]
  28. Vining L. C., Westlake D.W.S. 1984; Chloramphenicol: properties, biosynthesis, and fermentation. In Biotechnology of Industrial Antibiotics, pp 387–411 Vandamme E. J. Edited by New York: Marcel Dekker;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-2-293
Loading
/content/journal/micro/10.1099/00221287-136-2-293
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error