1887

Abstract

Valine dehydrogenase (VDH) from A3(2) was purified from cell-free extracts to apparent homogeneity. The enzyme had an 41000 in denaturing conditions and an 70000 by gel filtration chromatography, indicating that it is composed of two identical subunits. It oxidized -valine and -α-aminobutyric acid efficiently, -isoleucine and -leucine less efficiently, and did not act on -valine. It required NAD as cofactor and could not use NADP. Maximum dehydrogenase activity with valine was at pH 10.5 and the maximum reductive amination activity with 2-oxoisovaleric acid and NHCl was at pH 9. The enzyme exhibited substrate inhibition in the forward direction and a kinetic pattern with NAD that was consistent with a sequential ordered mechanism with non-competitive inhibition by valine. The following Michaelis constants were calculated from these data: -valine, 10·0 m; NAD, 0·17 m; 2-oxoisovalerate, 0·6 m; and NADH, 0·093 m In minimal medium, VDH activity was repressed in the presence of glucose and NH , or glycerol and NH or asparagine, and was induced by - and -valine. The time required for full induction was about 24 h and the level of induction was 2- to 23-fold.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-2-273
1990-02-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/2/mic-136-2-273.html?itemId=/content/journal/micro/10.1099/00221287-136-2-273&mimeType=html&fmt=ahah

References

  1. Asano Y., Nakazawa A., Endo K., Hibino Y., Ohmori M., Numao N., Kondo K. 1987; Phenylalanine dehydrogenase of Bacillus badius. . European Journal of Biochemistry 168:153–159
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  3. Brendelberger G., Retey J., Ashworth D. M., Reynolds K., Willenbrock F., Robinson J. A. 1988; Enzymatic conversion of isobutyryl- to butyrylcarba(dethia)coenzyme A. A coenzyme B12 dependent rearrangement. Angewandte Chemistry International Edition in English 27:1089–1090
    [Google Scholar]
  4. Cleland W. W. 1979; Substrate inhibition. Methods in Enzymology 63:500–513
    [Google Scholar]
  5. Dotzlaf J. E., Metzger L. S., Foglesong M. A. 1984; Incorporation of amino acid-derived carbon into tylactone by Streptomyces fradiae GSM. Antimicrobial Agents and Chemotherapy 25:216–220
    [Google Scholar]
  6. Duggleby R. G. 1984; Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. Computers in Biology and Medicine 14:447–455
    [Google Scholar]
  7. Fisher S. H. 1988; Nitrogen assimilation in Streptomyces. . In Biology of Actinomycetes ’88 pp 47–51 Okami Y., Beppu T., Ogawara H. Edited by Tokyo: Japan Scientific Societies Press;
    [Google Scholar]
  8. Hodgson D. A. 1982; Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. Journal of General Microbiology 128:2417–2430
    [Google Scholar]
  9. Hopwood D. A. 1988; Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proceedings of the Royal Society B325:121–138
    [Google Scholar]
  10. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  11. Hutchinson C. R. 1988; Impact of genetic engineering on the commercial production of antibiotics by Streptomyces and related bacteria. Applied Biochemistry and Biotechnology 16:169–190
    [Google Scholar]
  12. Kendrick K. E., Wheelis M. L. 1982; Histidine dissimilation in Streptomyces coelicolor. . Journal of General Microbiology 128:2029–2040
    [Google Scholar]
  13. Kroening T. A., Kendrick K. E. 1987; In vivo regulation of histidine ammonia-lyase activity from Streptomyces griseus. . Journal of Bacteriology 169:823–829
    [Google Scholar]
  14. Kroening T. A., Kendrick K. E. 1989; Cascading regulation of histidase activity in Streptomyces griseus. . Journal of Bacteriology 171:1100–1105
    [Google Scholar]
  15. Madduri K., Stuttard C., Vining L. C. 1989; Lysine catabolism in Streptomyces spp. is primarily through cadaverine: β-lactam producers also make α-aminoadipate. Journal of Bacteriology 171:299–302
    [Google Scholar]
  16. Magasanik B., Neidhardt F. C. 1987; Regulation of carbon and nitrogen utilization. In Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology pp 1318–1325 Neidhardt F. C. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Massey L. K., Sokatch J. R., Conrad R. S. 1976; Branched- chain amino acid catabolism in bacteria. Bacteriology Review 40:42–54
    [Google Scholar]
  18. Matin R. R., Marshall V. D., Sokatch J. R., Unger L. 1973; Common enzymes of branched-chain amino acid catabolism in Pseudomonas putida. . Journal of Bacteriology 115:198–204
    [Google Scholar]
  19. Omura S., Tanaka Y. 1984; Biochemistry, regulation and genetics of macrolide production. In Macrolide Antibiotics pp 199–231 Omura S. Edited by New York: Academic Press;
    [Google Scholar]
  20. Omura S., Tanaka Y., Mamada H., Masuma R. 1983a; Ammonium ion suppresses the biosynthesis of tylosin aglycone by interference with valine catabolism in Streptomyces fradiae. . Journal of Antibiotics 36:1792–1794
    [Google Scholar]
  21. Omura S., Tsuzuki K., Tanaka Y., Sakakibara H., Aizawa M., Lukacs G. 1983b; Valine as a precursor of the w-butyrate unit in the biosynthesis of macrolide aglycones. Journal of Antibiotics 36:614–616
    [Google Scholar]
  22. Omura S., Tanaka Y., Mamada H., Masuma R. 1984a; Effect of ammonium ion, inorganic phosphate, and amino acids on the biosynthesis of protylonolide, a precursor of tylosin aglycone. Journal of Antibiotics 37:494–502
    [Google Scholar]
  23. Omura S., Tanaka Y., Mamada H., Masuma R. 1984b; Ammonium ions suppress the amino acid metabolism involved in the biosynthesis of protylonolide in a mutant of Streptomyces fradiae. . Journal of Antibiotics 37:1362–1369
    [Google Scholar]
  24. Porumb H., Vancea D., Muresan L., Presecan E., Lascu I., Petrescu I., Porumb T., Pop R., Barzu O. 1987; Structural and catalytic properties of l-alanine dehydrogenase from Bacillus cereus. . Journal of Biological Chemistry 262:4610–4615
    [Google Scholar]
  25. Pospisil S., Sedmera P., Havranek M., Krumphazl V., Vanek Z. 1983; Biosynthesis of monensins A and B. Journal of Antibiotics 36:617–619
    [Google Scholar]
  26. Priestly N. D., Robinson J. A. 1989; Purification and catalytic properties of l-valine dehydrogenase from Streptomyces cinnamonen- sis. . Biochemistry Journal 261:853–861
    [Google Scholar]
  27. Sood G. R., Ashworth D. M., Ajaz A. A., Robinson J. A. 1988; Biosynthesis of the polyether antibiotic monensin-A. Results from the incorporation of labelled acetate and propionate as a probe of the carbon chain assembly process. Journal of the Chemical Society Perkin Transactions I 1988:3183–3194
    [Google Scholar]
  28. Reynolds K. A., O’Hagen D., Gani D., Robinson J. A. 1988; Butyrate metabolism in streptomycetes. Characterization of an intramolecular vicinal interchange rearrangement linking isobutyrate and butyrate in Streptomyces cinnamonensis. . Journal of the Chemical Society Perkin Transactions I 1988:3195–3208
    [Google Scholar]
  29. Schutte H., Hummerl W., Tsai H., Kula M.-R. 1985; l- Leucine dehydrogenase from Bacillus cereus. . Applied Microbiology and Biotechnology 22:306–317
    [Google Scholar]
  30. Sherman M. M., Yue S., Hutchinson C. R. 1986; Biosynthesis of lasalocid A. Metabolic interrelationships of carboxylic acid precursors and polyether antibiotics. Journal of Antibiotics 39:1135–1143
    [Google Scholar]
  31. Smith E. L., Austin B. M., Blumenthal K. M., Nyc J. F. 1975; Glutamate dehydrogenases. In The Enzymes XI pp 294–368 Boyer P. D. Edited by New York: Academic Press;
    [Google Scholar]
  32. Vancura A., Rezanka T., Marsalek J., Vancurova I., Kristan V., Basarova G. 1987; Effect of ammonium ions on the composition of fatty acids in Streptomyces fradiae, producer of tylosin. FEMS Microbiology Letters 48:357–360
    [Google Scholar]
  33. Vancura A., Vancurova I., Volc J., Fussey S.P.M., Flieger M., Neuzil J., Marsalek J., Behal V. 1988; Valine dehydrogenase from Streptomyces fradiae: purification and properties. Journal of General Microbiology 134:3213–3219
    [Google Scholar]
  34. Vancura A., Vancurova I., Volc J., Jones S.K.T., Flieger M., Basarova G., Behal V. 1989; Alanine dehydrogenase from Streptomyces fradiae. . European Journal of Biochemistry 179:221–227
    [Google Scholar]
  35. Vancurova I., Vancura A., Volc J., Neuzil J., Flieger M., Basarova G., Behal V. 1988a; Isolation and characterization of valine dehydrogenase from Streptomyces aureofaciens. . Journal of Bacteriology 170:5192–5196
    [Google Scholar]
  36. Vancurova I., Vancura A., Volc J., Neuzil J., Flieger M., Basarova G., Behal V. 1988b; Purification and partial characterization of alanine dehydrogenase from Streptomyces aureofaciens. . Archives of Microbiology 150:438–440
    [Google Scholar]
  37. Vara J. A., Hutchinson C. R. 1988; Purification of thymidine- diphospho-D-glucose 4,6-dehydratase from an erythromycin-producing strain of Saccharopolyspora erythraea by high resolution liquid chromatography. Journal of Biological Chemistry 263:14992–14995
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-2-273
Loading
/content/journal/micro/10.1099/00221287-136-2-273
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error