Osmotically induced oligo- and polysaccharide synthesis by SU-47 Free

Abstract

In standard liquid medium containing 5g mannitol land 1g glutamic acid l, SU-47 cells accumulated 350 mg cyclic 1,2-β-glucans (g protein). The cyclic glucans were 36% glycerol-1-phosphatesubstituted and 64% were uncharged. In the same medium with 10 g mannitol l, repeating units of succinoglycan (1110 mg l) were found as extracellular carbohydrates, and only low amouns of the succinoglycan polymer (up to 300 mg l) were excreted. By raising the omotic pressure of the medium by the addition of NaCl or other ionic and non-ionic osmolytes, succinoglycan production could be stimulated: up to 2·4 g lat 0·2 m-NaCl was produced at the expense of the repeating units. Above 0·2 m-NaCl growth was slowed down, and succinoglycan excretion diminished. At 1 -NaCl growth stopped completely. In standard medium containing 0·6 -NaCl the amount of cellular cyclic 1,2--glucans was lowered to 150 mg (g protein)out of which the glycerol-1-phosphatesubstituted glucan fraction was reduced to 15%. Instead, high amounts of oliogosaccharides were synthesized as osmoprotectants, with trehalose as the major component [up to 200 mg (g protein)]. Glycogen synthesis was completely suppressed at this salt conenctration, while poly β-hydroxyutyric acid syntheis was unaffected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-12-2511
1990-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/12/mic-136-12-2511.html?itemId=/content/journal/micro/10.1099/00221287-136-12-2511&mimeType=html&fmt=ahah

References

  1. Abe M., Amemura A., Higashi A. 1982; Studies on cyclic β-(1,2)- glucan obtained from the periplasmic space of Rhizobium trifolii cells. Plant and Soil 64:315–324
    [Google Scholar]
  2. Amemura A., Hisamatsu M., Mitani H. 1983; Cyclic (1,2)-β-d-glucan and the octasaccharide repeating units of extracellular acidic polysaccharides produced by Rhizobium . Carbohydrate Research 114:277–285
    [Google Scholar]
  3. Amemura A., Footrakul P., Koizumi K., Utamura T., Taguchi H. 1985; Isolation of (1,2)-β-d-glucans from tropical strains of Rhizobiumand determination of their degrees of polymerization. Journal of Fermentation Technology 63:115–120
    [Google Scholar]
  4. Batley M., Redmond J. W., Djordjevic S. P., Rolff B. G. 1987; Characterization of glycerophosphorylated cyclic β-(1,2)- glucans from a fast growing Rhizobium species. Biochimica et Siophysica Acta 901:119–126
    [Google Scholar]
  5. Berry A., Devault J. D., Chakrabarty A. M. 1989; High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. Journal of Bacteriology 171:2312–2317
    [Google Scholar]
  6. Blakeney A. B., Harris P. J., Henry R. J., Stone B. A. 1983; A simple and rapid preparation of alditol-acetates for monosaccharide analysis. Carbohydrate Research 113:291–299
    [Google Scholar]
  7. Botsford J. L. 1984; Osmoregulation in Rhizobium meliloti: inhibition of growth by salts. Archives of Microbiology 137:124–127
    [Google Scholar]
  8. Braunegg G., Sonnleiter B., Lapferty R. M. 1978; A rapid gaschromatographic method for the determination of ply-β-hydroxybutyric acid in microbial biomass. European Journal of Applied Microbiology 6:29–31
    [Google Scholar]
  9. Breedveld M. W., Zevenhuizen L. P. T. M., Zehnder A. J. B. 1990; Excessive excretion of cyclic β-(1,2)-glucan by Rhizobium trifolii TA-1. Applied and Environmental Microbiology 56:2080–2086
    [Google Scholar]
  10. Burton R. M. 1957; The determination of glycerol and dihydroxy-acetone. Methods in Enzymology 3:246–249
    [Google Scholar]
  11. Chang R. 1977 Physical Chemistry with Applications to Biological Systems New York: McMillan;
    [Google Scholar]
  12. Czonka L. N. 1989; Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews 53:121–147
    [Google Scholar]
  13. Dylan T., Helinski D. R., Ditta G. S. 1990; Hypoosmotic adaptation in Rhizobium meliloti requires β-(1,2)-glucan. Journal of Bacteriology 172:1409–1417
    [Google Scholar]
  14. Harada T., Amemura A. 1981; Bacterial β-glycans: succinoglycan and curdlan. Memorials of the Institute of Scientific and Industrial Research, Osaka University 38:37–49
    [Google Scholar]
  15. Harris P. J., Henry R. J., Blakeney A. B., Stone B. A. 1984; An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydrate Research 127:59–73
    [Google Scholar]
  16. Hismtsu M., Sano K., Amemura A., Harada T. 1978; Acidic polysaccharides containing succinic acid in various strains of Agrobacteriwn . Carbohydrate Research 61:89–96
    [Google Scholar]
  17. Hisamatsu M., Yamada T., Akaki M., Nashinoki H., Takai Y., Amemura A. 1985; Structural studies on new, non-reducing oligosaccharides produced by Rhizobium meliloti J7017. Agricultural and Biological Chemistry 49:1447–1451
    [Google Scholar]
  18. Leigh J. A., Signer E. R., Walker G. C. 1985; Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proceedings of the National Academy of Sciences of the United States of America 82:6231–6235
    [Google Scholar]
  19. Le Rudulier D., Bernard T. 1986; Salt tolerance in rhizobia: a possible role for betaines. FEMS Microbiology Reviews 39:67–72
    [Google Scholar]
  20. Linton J. D., Evans M., Jones D. S., Gouldney D. N. 1987; Exocellularsuccinoglucan production by Agrobacterium radiobacterNCIB 11883. Journal of General Microbiology 133:2961–2969
    [Google Scholar]
  21. Long S., Reed J. W., Himawan J., Walker G. C. 1988; Genetic analysis of a cluster of genes required for synthesis of the calcofluor- binding exopolysaccharide of Rhizobium meliloti . Journal of Bacteriology 170:4239–4248
    [Google Scholar]
  22. Mcintire F. C., Peterson W. H., Riker A. J. 1942; A polysaccharide produced by the crown-gall organism. Journal of Biological Chemistry 143:491–496
    [Google Scholar]
  23. Miller K. J., Kennedy E. P., Reinhold V. N. 1986; Osmotic adaptation by Gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51
    [Google Scholar]
  24. Miller K. J., Reinhold V. N., Weissborn A. C., Kennedy E. P. 1987; Cyclic glucans produced by Agrobacterium tumefaciens are substituted with sn-1-phosphoglycerol residues. Biochimica et Biophysica Acta 901:112–118
    [Google Scholar]
  25. Morris V. J., Brownsey G. J., Harris J. E., Gunning A. P., Stevens B. J. H., Johnston A. W. B. 1989; Cation-dependent gelation of the acidic extracellular polysaccharides of Rhizobium leguminosarum: a non-specific mechanism for the attachment of bacteria to plant roots. Carbohydrate Research 191:315–320
    [Google Scholar]
  26. Schulman H., Kennedy E. P. 1979; Localization of membrane-derived oligosaccharides in the outer envelope of Escherichia coli and their occurrence in other Gram-negative bacteria. Journal of Bacteriology 137:686–688
    [Google Scholar]
  27. Stock J. B., Rauch B., Roseman S. 1977; Periplasmic space in Salmonella typhimuriumand Escherichia coli . Journal of Biological Chemistry 252:7850–7861
    [Google Scholar]
  28. Streeter J. G. 1985; Accumulation of α-α-trehalose by Rhizobium bacteria and bacteroids. Journal of Bacteriology 164:78–84
    [Google Scholar]
  29. Trevelyan W. E., Harrison J. S. 1952; Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates. Biochemical Journal 50:298–310
    [Google Scholar]
  30. Usui T., Yokoyama M., Yamaoka N., Matsuda K., Tuzimura K. 1974; Proton magnetic resonance spectra of d-gluco-oligosaccharides and d-glucans. Carbohydrate Research 33:105–116
    [Google Scholar]
  31. Vincent J. M. 1974; Root-nodule symbiosis with Rhizobium . In The Biology of Nitrogen Fixation pp. 265–342 Quispel A. Edited by Amsterdam: North Holland Publishing Co;
    [Google Scholar]
  32. Zevenhuizen L. P. T. M., Scholten-Koerselman H. J. 1979; Surface carbohydrates of Rhizobium. I. β-(1,2)-Glucans. Antonie van Leeuwenhoek 45:165–175
    [Google Scholar]
  33. Zevenhuizen L. P. T. M. 1981; Cellular glycogen, β-(1,2)-glucan, poly-β-hydroxybutyric acid and extracellular polysaccharides in fast growing species of Rhizobium . Antonie van Leeuwenhoek 47:481–497
    [Google Scholar]
  34. Zevenhuizen L. P. T. M. 1984; Gel-forming capsular polysaccharide of fast-growing rhizobia: occurrence and rheological properties. Applied Microbiology and Biotechnology 20:393–399
    [Google Scholar]
  35. Zevenhuizen L. P. T. M. 1986; Selective synthesis of polysaccharides by Rhizobium trifolii strain TA-1. FEMS Microbiology Letters 35:43–47
    [Google Scholar]
  36. Zevenhuizen L. P. T. M., Van Neerven A. R. W. 1983; (1,2)-β-d-Glucan and acidic oligosaccharides produced by Rhizobium meliloti . Carbohydrate Research 118:127–134
    [Google Scholar]
  37. Zevenhuizen L.P.T.M., Van Veldhuizen A., Fokkens R. H. 1990; Re-examination of cellular β-(1,2)-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution. Antonie van Leeuwenhoek 57:173–178
    [Google Scholar]
  38. Zhan H., Levery S. B., Lee C. C., Leigh J. A. 1989; A second exopolysaccharide of Rhizobium meliloti strain SU-47 that can function in root nodule invasion. Proceedings of the National Academy of Sciences of the United States of America 86:3055–3059
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-12-2511
Loading
/content/journal/micro/10.1099/00221287-136-12-2511
Loading

Data & Media loading...

Most cited Most Cited RSS feed