1887

Abstract

By using pulsed-field gel electrophoresis, we have separated the entire chromosome bands and examined the electrophoretic karyotypes of 27 strains of . The electrophoretic karyotype varied widely among these strains. Their chromosomal DNAs were resolved into 7-12 bands ranging in size from 042 to 30 Mb. Most of the separated chromosomal bands were assigned by eight cloned DNA probes. These results suggest that the haploid number of chromosomes is eight. Each of the probes hybridized specifically to one or two bands of similar size in most strains. With the exception of the MGL1 probe, when two bands were detected by one probe, the size of one of them was very conserved whilst the other was of fairly variable size. The sizes of the chromosome bands assigned by the MGL1 probe were much more variable. As is considered to be a diploid organism, it is inferred that the karyotype polymorphism between strains is mainly derived from wide size heterogeneity in one of the homologous chromosomes. Furthermore, we have confirmed species-specific and strain-specific variation in medically important species ( and ). Electrophoretic karyotype analysis is thus useful for species assignation. The TUB2 probe, encoding beta-tubulin, hybridized to the chromosomal DNA of all the species examined, but four probes exhibited cross-species hybridization with only. The karyotype of seems to be within the range of the intraspecies variation observed in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-12-2433
1990-12-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/12/mic-136-12-2433.html?itemId=/content/journal/micro/10.1099/00221287-136-12-2433&mimeType=html&fmt=ahah

References

  1. Chu G., Vollrath D., Davis R. W. 1986; Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585
    [Google Scholar]
  2. Corcoran L. M., Forsyth K. P., Bianco A. E., Brown G. V., Kemp D. J. 1986; Chromosome size polymorphisms in Plasmodium falciparum can involve deletions and are frequent in natural parasite populations. Cell 44:87–95
    [Google Scholar]
  3. Corcoran L. M., Thompson J. K., Walliker D., Kemp D. J. 1988; Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum . Cell 53:807–813
    [Google Scholar]
  4. Gillum A. M., Tsay E. Y. H., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular and General Genetics 198:179–182
    [Google Scholar]
  5. Hilton C., Markie D., Corner B., Rikkerink E., Poulter R. 1985; Heat shock induces chromosome loss in the yeast Candida albicans . Molecular and General Genetics 200:162–168
    [Google Scholar]
  6. Kakar S. N., Magee P. T. 1982; Genetic analysis of Candida albicans: identification of different isoleucine-valine, methionine, and arginine alleles by complementation. Journal of Bacteriology 151:1247–1252
    [Google Scholar]
  7. Kakar S. N., Partridge R. M., Magee P. T. 1983; A genetic analysis of Candida albicans: isolation of a wide variety of auxotrophs and demonstration of linkage and complementation. Genetics 104:241–255
    [Google Scholar]
  8. Kurtz M. B., Cortelyou M. W., Kirsch D. R. 1986; Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene. Molecular and Cellular Biology 6:142–149
    [Google Scholar]
  9. Kwon-Chung K. J., Riggsby W. S., Uphoff R. A., Hicks J. B., Whelan W. L., Reiss E., Magee B. B., Wickes B. L. 1989; Genetic differences between Type I and Type II Candida stellatoidea . Infection and Immunity 57:527–532
    [Google Scholar]
  10. Lasker B. A., Carle G. F., Kobayashi G. S., Medoff G. 1989; Comparison of the separation of Candida albicans chromosome-sized DNA by pulsed-field gel electrophoresis techniques. Nucleic Acids Research 17:3783–3793
    [Google Scholar]
  11. Lott T. J., Boiron P., Reiss E. 1987; An electrophoretic karyotype for Candida albicans reveals large chromosomes in multiples. Molecular and General Genetics 209:170–174
    [Google Scholar]
  12. Magee B. B., Magee P. T. 1987; Electrophoretic karyotypes and chromosome numbers in Candida species. Journal of General Microbiology 133:425–430
    [Google Scholar]
  13. Magee B. B., Koltin Y., Gorman J. A., Magee P. T. 1988; Assignment of cloned genes to the seven electrophoretically separated Candida albicans chromosomes. Molecular and Cellular Biology 8:4721–4726
    [Google Scholar]
  14. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Merz W. G., Connelly C., Hieter P. 1988; Variation of electrophoretic karyotypes among clinical isolates of Candida albicans . Journal of Clinical Microbiology 26:842–845
    [Google Scholar]
  16. Mortimer R. K., Schild D. 1985; Genetic map of Saccharomyces cerevisiae . , 9. Microbiological Reviews 49:181–212
    [Google Scholar]
  17. Odds F. C. 1988 Candida and Candidosis, 2nd edn. London: Baillière Tindall;
    [Google Scholar]
  18. Riggsby W. S., Torres-Bauza L. J., Wills J. W., Townes T. M. 1982; DNA content, kinetic complexity, and the ploidy question in Candida albicans . Molecular and Cellular Biology 2:853–862
    [Google Scholar]
  19. Rikkerink E. H., Magee B. B., Magee P. T. 1990; Genomic structure of Candida stellatoidea: extra chromosomes and gene duplication. Infection and Immunity 58:949–954
    [Google Scholar]
  20. Rosenbluh A., Mevarech M., Koltin K., Gorman J. A. 1985; Isolation of genes from Candida albicans by complementation in Saccharomyces cerevisiae . Molecular and General Genetics 200:500–502
    [Google Scholar]
  21. Rustchenko-Bulgac E. P., Sherman F., Hicks J. B. 1990; Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans . Journal of Bacteriology 172:1276–1283
    [Google Scholar]
  22. Scherer S., Stevens D. A. 1988; A Candida albicans dispersed, repeated gene family and its epidemiologic applications. Proceedings of the National Academy of Sciences of the United States of America 85:1452–1456
    [Google Scholar]
  23. Schwartz D. C., Cantor C. R. 1984; Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75
    [Google Scholar]
  24. Shapiro J. A. 1983 Mobile Genetic Elements New York: Academic Press;
    [Google Scholar]
  25. Shibata N., Fukasawa S., Kobayashi H., Tojo M., Yonezu T., Ambo A., Ohkubo Y., Suzuki S. 1989; Structural analysis of phospho-D-mannan-protein complexes isolated from yeast and mold form cells of Candida albicans NIH A-207 serotype A strain. Carbohydrate Research 187:239–253
    [Google Scholar]
  26. Shimizu K., Kondoh Y., Tanaka K. 1987; Proteinase production and pathogenicity of Candida albicans . Microbiology and Immunology 31:1045–1060
    [Google Scholar]
  27. Smith H. A., Allaudeen H. S., Whitman M. H., Koltin Y., Gorman B. E. 1988; Isolation and characterization of beta-tubulin gene from Candida albicans . Gene 63:53–63
    [Google Scholar]
  28. Snell R. G., Hermans I. F., Wilkins R. J., Corner B. E. 1987; Chromosomal variations in Candida albicans . Nucleic Acids Research 15:3625
    [Google Scholar]
  29. Soll D. R., Langtimm C. J., Mcdowell J., Hicks J., Galask R. 1987; High-frequency switching in Candida strains isolated from vaginitis patients. Journal of Clinical Microbiology 25:1611–1622
    [Google Scholar]
  30. Suzuki T., Rogers A. L., Magee P. T. 1986; Inter- and intra-species crosses between Candida albicans and Candida guilliermondii . Yeast 2:53–58
    [Google Scholar]
  31. Suzuki T., Kobayashi I., Mizuguchi I., Banno I., Tanaka K. 1988; Electrophoretic karyotypes in medically important Candida species. Journal of General and Applied Microbiology 34:409–416
    [Google Scholar]
  32. Suzuki T., Kobayashi I., Kanbe T., Tanaka K. 1989; High frequency variation of colony morphology and chromosome reorganization in the pathogenic yeast Candida albicans . Journal of General Microbiology 135:425–434
    [Google Scholar]
  33. Szostak J. W., Wu R. 1980; Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae . Nature; London: 284426–430
    [Google Scholar]
  34. Vollrath D., Davis R. W. 1987; Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. Nucleic Acids Research 15:7865–7876
    [Google Scholar]
  35. Whelan W. L., Partridge R. M., Magee P. T. 1980; Heterozygosity and segregation in Candida albicans . Molecular and General Genetics 180:107–113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-12-2433
Loading
/content/journal/micro/10.1099/00221287-136-12-2433
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error