1887

Abstract

Bacteriophage FP22 has a very broad host range within streptomycetes and appeared to form lysogens of ATCC 15154. FP22 shared strong cross-immunity and antibody cross-reactivity with bacteriophage P23, but not with seven other streptomycete bacteriophages. FP22 particles had a head diameter of 71 nm and a tail length of 307 nm. The FP22 genome was 131 kb, which is the largest bacteriophage genome reported for streptomycetes. The G + C content of the genome was 46 mol% and restriction mapping indicated that FP22 DNA had discrete ends. NaCl- and pyrophosphate-resistant deletion mutants were readily isolated and the extent of the deletions defined at least 23 kb of dispensable DNA in two regions of the genome. The DNA was not cleaved by most restriction endonucleases (or isoschizomers) which have been identified in the streptomycetes, including the tetranucleotide cutter (GATC).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-12-2395
1990-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/12/mic-136-12-2395.html?itemId=/content/journal/micro/10.1099/00221287-136-12-2395&mimeType=html&fmt=ahah

References

  1. Ackermann H. -W., Eisenstark A. 1979; The present state of phage taxonomy. Intervirology 3:201–209
    [Google Scholar]
  2. Anné J., Wohlleben W., Burkardt H. J., Springer R., Pühler A. 1984; Morphological and molecular characterization of several actinophages isolated from soil which lyse Streptomyces cattleya or S. venezuelae . Journal of General Microbiology 130:2639–2649
    [Google Scholar]
  3. Baltz R. H. 1978; Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. Journal of General Microbiology 107:93–102
    [Google Scholar]
  4. Baltz R. H. 1980; Genetic recombination by protoplast fusion in Streptomyces . Developments in Industrial Microbiology 21:43–54
    [Google Scholar]
  5. Baltz R. H., Bingham P. M., Drake J. W. 1976; Heat mutagenesis in bacteriophage T4: the transition pathway. Proceedings of the National Academy of Sciences of the United States of America 73:1269–1273
    [Google Scholar]
  6. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30:157–166
    [Google Scholar]
  7. Carle G. F., Olson M. V. 1984; Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Research 12:5647–5664
    [Google Scholar]
  8. Carle G. F., Frank M., Olson M. V. 1986; Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232:65–68
    [Google Scholar]
  9. Chater K. F. 1986; Streptomyces phages and their applications to Streptomyces genetics. In The Bacteria 9 Antibiotic-producing Streptomyces pp. 119–158 Queener S. E., Day L. E. Edited by London: Academic Press;
    [Google Scholar]
  10. Chater K. F., Carter A. T. 1979; A new, wide host range temperate bacteriophage (R4) of Streptomyces and its interaction with some restriction-modification systems. Journal of General Microbiology 115:431–442
    [Google Scholar]
  11. Chater K. F., Wilde L. 1980; Streptomyces albus G mutants defective in the SalGI restriction-modification system. Journal of General Microbiology 116:323–324
    [Google Scholar]
  12. Cox K. L., Baltz R. H. 1984; Restriction of bacteriophage plaque formation in Streptomyces spp. Journal of Bacteriology 159:499–504
    [Google Scholar]
  13. Diaz L. A., Hardisson C., Rodicio M. R. 1989; Isolation and characterization of actinophages infecting Streptomyces species and their interaction with host restriction-modification systems. Journal of General Microbiology 135:1847–1856
    [Google Scholar]
  14. Dove W. F., Davidson N. 1962; Cation effects on the denaturation of DNA. Journal of Molecular Biology 5:467–478
    [Google Scholar]
  15. Dowding J. E. 1973; Characterization of a bacteriophage virulent for Streptomyces coelicolor A 3(2). Journal of General Microbiology 76:163–176
    [Google Scholar]
  16. Duncan B. K., Miller J. H. 1980; Mutagenic deamination of cytosine residues in DNA. Nature; London: 287560–561
    [Google Scholar]
  17. Fishman S. E., Hershberger C. L. 1983; Amplified DNA in Streptomyces fradiae . Journal of Bacteriology 155:459–466
    [Google Scholar]
  18. Foor F., Roberts G. P., Morin N., Synder L., Hwang M., Gibbons P. H., Paradiso M. J., Stotish R. L., Ruby C. L., Wolanski B., Streicher S. L. 1985; Isolation and characterization of the Streptomyces cattleya temperate phage TG1. Gene 39:11–16
    [Google Scholar]
  19. Greene J., Goldberg R. B. 1985; Isolation and preliminary characterization of lytic and lysogenic phages with wide host range within the streptomycetes. Journal of General Microbiology 131:2459–2465
    [Google Scholar]
  20. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985; Genetic Manipulations of Streptomyces: a Laboratory Manual. Norwich: The John Innes Foundation;
    [Google Scholar]
  21. Korn F., Weingärtner B., Kutzner H. J. 1978; A study of twenty actinophages: morphology, serological relationship and host range. In Genetics of the Actinomycetales pp. 251–270 Freerksen E., Tamok I., Thumin J. H. Edited by Stuttgart & New York: G. Fischer;
    [Google Scholar]
  22. Kuhn S. P., Lampel J. S., Strohl W. R. 1987; Isolation and characterization of a temperate bacteriophage from Streptomyces galilaeus . Applied and Environmental Microbiology 53:2708–2713
    [Google Scholar]
  23. Leung S. -M., Chan K. -Y., Suen Y. -K., Shaw P. -C. 1989; Screening and characterization of restriction endonucleases from a bacterial culture collection in Hong Kong. Nucleic Acids Research 17:10133
    [Google Scholar]
  24. Loeb L. A. 1985; Apurinic sites as mutagenic intermediates. Cell 40:483–484
    [Google Scholar]
  25. Lomovskaya N. D., Chater K. F., Mkrtumian N. M. 1980; Genetics and molecular biology of Streptomyces bacteriophages. Microbiological Reviews 44:206–229
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  27. Matsushima P., Baltz R. H. 1985; Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. Journal of Bacteriology 163:180–185
    [Google Scholar]
  28. Matsushima P., Baltz R. H. 1989; Streptomyces lipmanii expresses two restriction systems that inhibit plasmid transformation and bacteriophage plaque formation. Journal of Bacteriology 171:3128–3132
    [Google Scholar]
  29. Matsushima P., Cox K. L., Baltz R. H. 1987; Highly transformable mutants of Streptomyces fradiae defective in several restriction systems. Molecular and General Genetics 206:393–400
    [Google Scholar]
  30. Mchenney M. A., Baltz R. H. 1988; Transduction of plasmid DNA in Streptomyces spp. and related genera by bacteriophage FP43. Journal of Bacteriology 170:2276–2282
    [Google Scholar]
  31. Mchenney M. A., Baltz R. H. 1989; Transduction of plasmid DNA in macrolide producing streptomycetes. Journal of Antibiotics 42:1725–1727
    [Google Scholar]
  32. Nelson M., Mcclelland M. 1989; Effect of site specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Research 17:r389–r415
    [Google Scholar]
  33. Roberts J. R. 1988; Restriction enzymes and their isoschizomers. Nucleic Acids Research 16:r271–r313
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Seno E. T., Baltz R. H. 1989; Structural organization and regulation of antibiotic biosynthesis and resistance genes in actinomycetes. In Regulation of Secondary Metabolism in Actinomycetes pp. 1–48 Shapiro S. Edited by Boca Raton, Florida: CRC Press;
    [Google Scholar]
  36. Seno E. T., Hutchinson C. R. 1986; The biosynthesis of tylosin and erythromycin: model systems for studies of the genetics and biochemistry of antibiotic formation. In The Bacteria 9 Antibiotic-producing Streptomyces pp. 231–279 Queener S. W., Day L. E. Edited by New York: Academic Press;
    [Google Scholar]
  37. Stuttard C. 1989; Generalized transduction in Streptomyces species. In Genetics and Molecular Biology of Industrial Microorganisms pp. 157–162 Hershberger C. L., Queener S. W., Hegeman G. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Veitinger S., Schmitz G. G., Kaluza K., Jarsch M., Braun V., Kessler C. 1990; SfuI, a novel AsuII isoschizomer from Streptomyces fulvissimus recognizing 5′-TT/CGAA-3′. Nucleic Acids Research 18:3424
    [Google Scholar]
  39. Waksman S. A. 1961; Appendix II. Certain important media for the study of actinomycetes. In The Actinomycetes II Classification, Identification and Descriptions of Genera and Species pp. 328–334 Baltimore: Williams & Wilkins;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-12-2395
Loading
/content/journal/micro/10.1099/00221287-136-12-2395
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error