Glycerol catabolism in : nucleotide sequence of the genes encoding glycerol kinase () and glycerol-3-phosphate dehydrogenase () Free

Abstract

The region of the chromosome was cloned in its natural host in plasmid pHP13. The region contains genes required for glycerol catabolism: coding for glycerol kinase, coding for glycerol-3-phosphate (G3P) dehydrogenase and , proposed to code for a positively acting regulatory protein. The cloned 7 kb fragment carries wild-type alleles of and . It can also complement a strain deleted for the entire region. The wild-type alleles were mapped to different subfragments, establishing the gene order . The nucleotide sequence of and was determined. Immediately upstream of , an additional open reading frame was found, possibly being part of the same operon. Putative transcription terminators were found in the region between and and downstream of . In a coupled in transcription/translation system, two proteins were found, corresponding in size to those predicted from the deduced amino acid sequences of glycerol kinase and G3P dehydrogenase (54 kDa and 63 kDa, respectively).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-12-2367
1990-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/12/mic-136-12-2367.html?itemId=/content/journal/micro/10.1099/00221287-136-12-2367&mimeType=html&fmt=ahah

References

  1. Amann E., Brosius J., Ptashne M. 1983; Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli . Gene 25:167–178
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . Journal of Bacteriology 81:741–746
    [Google Scholar]
  3. Arwert F., Venema G. 1973; Transformation in Bacillus subtilis . Molecular and General Genetics 123:185–198
    [Google Scholar]
  4. Canosi U., Morelli G., Trautner T. A. 1978; The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis . Molecular and General Genetics 166:259–267
    [Google Scholar]
  5. Cole S. T., Eiglmeier K., Ahmed S., Honore N., Elmes L., Anderson W. F., Weiner J. H. 1988; Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. Journal of Bacteriology 170:2448–2456
    [Google Scholar]
  6. Crutz A. -M., Steinmetz M., Aymerich S., Richter R., Le Coq D. 1990; Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. Journal of Bacteriology 172:1043–1050
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithes O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  8. Ehrmann M., Boos W., Ormseth E., Schweizer H., Larson T. J. 1987; Divergent transcription of the sn-glycerol-3-phosphate active transport glpT) and anaerobic sn-glycerol-3-phosphate dehydrogenase (glpA glpC glpB) genes of Escherichia coli K-12. Journal of Bacteriology 169:526–532
    [Google Scholar]
  9. Fortnagel P., Freese E. 1968; Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. Journal of Bacteriology 95:1431–1438
    [Google Scholar]
  10. Freedberg W. B., Lin E. C. C. 1973; Three kinds of controls affecting the expression of the glp regulon in Escherichia coli . Journal of Bacteriology 115:816–823
    [Google Scholar]
  11. Fridén H., Hederstedt L., Rutberg L. 1987; Deletion of the Bacillus subtilis sdh operon. FEMS Microbiology Letters 41:203–206
    [Google Scholar]
  12. Fry D. C., Kuby S. A., Mildvan A. S. 1986; ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proceedings of the National Academy of Sciences of the United States of America 83:907–911
    [Google Scholar]
  13. Gryczan T. J., Contente S., Dubnau D. 1978; Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis . Journal of Bacteriology 134:318–329
    [Google Scholar]
  14. Hager P. W., Rabinowitz J. C. 1985; Translational specificity in Bacillus subtilis . In The Molecular Biology of the Bacilli II pp. 1–32 Dubnau D. A. Edited by New York: Academic Press;
    [Google Scholar]
  15. Haima P., Bron S., Venema G. 1987; The effect of restriction on shotgun cloning in Bacillus subtilis Marburg. Molecular and General Genetics 209:335–342
    [Google Scholar]
  16. Higgins C. F., Hiles I. D., Salmond G. P. C., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W., Hermodson M. A. 1986; A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature; London: 323448–450
    [Google Scholar]
  17. Holmberg C., Rutberg B. 1989; Cloning of the glycerol kinase gene of Bacillus subtilis . FEMS Microbiology Letters 58:151–156
    [Google Scholar]
  18. Ish-Horowicz D., Burke J. F. 1981; Rapid and efficient cosmid cloning. Nucleic Acids Research 9:2989–2998
    [Google Scholar]
  19. Iuchi S., Cole S. T., Lin E. C. C. 1990; Multiple regulatory elements of the glpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and the glpD operon encoding aerobic glycerol-3-phosphate dehydrogenase in Escherichia coli: further characterization of respiratory control. Journal of Bacteriology 172:179–184
    [Google Scholar]
  20. Larson T. J., Schumacher G., Boos W. 1982; Identification of the glpT-encoded sn-glycerol-3-phosphate permease of Escherichia coli, an oligomeric integral membrane protein. Journal of Bacteriology 152:1008–1021
    [Google Scholar]
  21. Larson T. J., Ehrmann M., Boos W. 1983; Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. Journal of Biological Chemistry 258:5428–5432
    [Google Scholar]
  22. Lin E. C. C. 1976; Glycerol dissimilation and its regulation in bacteria. Annual Review of Microbiology 36:535–578
    [Google Scholar]
  23. Lin E. C. C., Koch J. P., Chused T. M., Jorgensen S. E. 1962; Utilization of l-α-glycerophosphate by Escherichia coliwithout hydrolysis. Proceedings of the National Academy of Sciences of the United States of America 48:2145–2150
    [Google Scholar]
  24. Lindgren V. 1978; Mapping of a genetic locus that affects glycerol- 3-phosphate transport in Bacillus subtilis . Journal of Bacteriology 133:667–670
    [Google Scholar]
  25. Lindgren V., Rutberg L. 1974; Glycerol metabolism in Bacillus subtilis: gene-enzyme relationships. Journal of Bacteriology 119:431–442
    [Google Scholar]
  26. Lindren V., Rutberg L. 1976; Genetic control of the glp system in Bacillus subtilis . Journal of Bacteriology 127:1047–1057
    [Google Scholar]
  27. Mahadevan S., Wright A. 1987; A bacterial gene involved in transcription antitermination: regulation at a rho-independent terminator in the bgl operon of E. coli . Cell 50:485–494
    [Google Scholar]
  28. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  29. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Messing J., Crea R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Research 9:309–321
    [Google Scholar]
  31. Mindich L. 1968; Pathway for oxidative dissimilation of glycerol in Bacillus subtilis . Journal of Bacteriology 96:565–566
    [Google Scholar]
  32. Neville D. M. Jr 1971; Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. Journal of Biological Chemistry 246:6328–6334
    [Google Scholar]
  33. Norrander J., Kempe T., Messing J. 1983; Construction of improved Ml3 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106
    [Google Scholar]
  34. Pettigrew D. W., Ma D.-P., Conrad C. A., Johnson J. R. 1988; Escherichia coli glycerol kinase. Journal of Biological Chemistry 263:135–139
    [Google Scholar]
  35. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annual Review of Genetics 13:319–353
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  37. Schweizer H., Larson T. J. 1987; Cloning and characterization of the aerobic sn-glycerol-3-phosphate dehydrogenase structural gene glpD of Escherichia coli K-12. Journal of Bacteriology 169:507–513
    [Google Scholar]
  38. Schweizer H., Boos W., Larson T. J. 1985; Repressor for the sn- glycerol-3-phosphate regulon of Escherichia coli K-12: cloning of the glpR gene and identification of its product. Journal of Bacteriology 161:563–566
    [Google Scholar]
  39. Schweizer H., Sweet G., Larson T. J. 1986; Physical and genetic structure of the glpD-malT interval of the Escherichia coli K- 12 chromosome. Molecular and General Genetics20 2:488–492
    [Google Scholar]
  40. Smith C. P., Chater K. F. 1988; Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. Journal of Molecular Biology 204:569–580
    [Google Scholar]
  41. Sweet G., Gandor C., Voegele R., Wittekindt N., Beuerle J., Truniger V., Lin E. C. C., Boos W. 1990; Glycerol facilitator of Escherichia coli: cloning of glpF and identification of the glpF product. Journal of Bacteriology 172:424–430
    [Google Scholar]
  42. Takeshita S., Sato M., Toba M., Masahashi W., Hashimotogotoh T. 1987; High-copy number and low-copy number plasmid vectors for lacZα-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61:63–74
    [Google Scholar]
  43. Tinoco I. Jr Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41
    [Google Scholar]
  44. Wierenga R. K., Terpstra P., Hol W. G. J. 1986; Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. Journal of Molecular Biology 187:101–107
    [Google Scholar]
  45. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-12-2367
Loading
/content/journal/micro/10.1099/00221287-136-12-2367
Loading

Data & Media loading...

Most cited Most Cited RSS feed