1887

Abstract

The utilization of guanidino and ureido compounds was studied in several species. Multiple routes of agmatine catabolism were found. All members of the homology group I of use the initial deamination of agmatine to carbamoylputrescine which is subsequently converted to putrescine. In , the catabolism of agmatine can also occur via an initial hydrolysis of the amidino group to putrescine catalyzed by an agmatine amidinohydrolase. A third pathway was found in , namely oxidative deamination producing guanidinobutyraldehyde catalyzed by agmatine dehydrogenase, followed by formation of guanidino-butyrate and removal of urea by guanidinobutyrate amidinohydrolase to produce 4-aminobutyrate. Novel amidino-hydrolases were characterized in for the utilization of arcaine and audouine, and in for arcaine, homoarginine and guanidinovalerate. Guanidinovalerate amidinohydrolase was also detected in . Some of these amidinohydrolases accept more than one substrate, e.g. guanidinobutyrate and guanidinovalerate utilization by and , the catabolism of arcaine and audouine by , and the degradation of arcaine and homoarginine by .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-11-2307
1990-11-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/11/mic-136-11-2307.html?itemId=/content/journal/micro/10.1099/00221287-136-11-2307&mimeType=html&fmt=ahah

References

  1. Appleyard G., Woods D. D. 1956; The pathway of creatine catabolism by Pseudomonas ovalis . Journal of General Microbiology 14:351–365
    [Google Scholar]
  2. Archibald R. M. 1944; Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. Journal of Biological Chemistry 156:121–142
    [Google Scholar]
  3. Campbell L. L. 1960; Reductive degradation of pyrimidine. V. Enzymatic conversion of N-carbamyl-β-alanine to β-alanine, carbon dioxide and ammonia. Journal of Biological Chemistry 235:2375–2378
    [Google Scholar]
  4. Carvaca J., Grisolia S. 1958; Enzymatic decarbamoylation of carbamyl β-alanine and carbamyl-β-aminoisobutyric acid. Journal of Biological Chemistry 231:357–365
    [Google Scholar]
  5. Chou C. C., Rodwell V. 1972; Metabolism of basic amino acids in Pseudomonas putida: guanidinobutyrate amido-hydrolase. Journal of Biochemistry 247:4486–4490
    [Google Scholar]
  6. Cunin R., Glansdorff N., Piérard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria. Microbiological Reviews 50:314–352
    [Google Scholar]
  7. Ennor A. H., Atoken L. A. 1948; The estimation of creatine. Biochemical Journal 42:557–563
    [Google Scholar]
  8. Friedrich B., Magasanik B. 1979; Enzymes of agmatine degradation and the control of their synthesis in Klebsiella aerogenes . Journal of Bacteriology 137:1127–1133
    [Google Scholar]
  9. Holloway B. W. 1955; Genetic recombination in Pseudomonas aeruginosa . Journal of General Microbiology 13:572–581
    [Google Scholar]
  10. Jann A., Matsumoto H., Hass D. 1988; The fourth arginine catabolic pathway of Pseudomonas aeruginosa . Journal of General Microbiology 134:1043–1053
    [Google Scholar]
  11. Jansen D. B., Op Den Camp H. J. M., Leenen P. J. M., Vander Drift C. 1980; The enzymes of ammonia assimilation in Pseudomonas aeruginosa . Archives of Microbiology 124:197–203
    [Google Scholar]
  12. Kim J. M., Shimizu S., Yamada H. 1986; Purification and characterization of a novel enzyme, N-carbamylsarcosine amido-hydrolase from Pseudomonas putida P 77. Journal of Biological Chemistry 261:11832–11839
    [Google Scholar]
  13. Meile L., Leisinger T. 1982; Purification and properties of the bifunctional proline dehydrogenase from Pseudomonas aeruginosa . European Journal of Biochemistry 129:67–75
    [Google Scholar]
  14. Mercenier A., Simon J. P., Haas D., Stalon V. 1980; Catabolism of l-arginine by Pseudomonas aeruginosa . Journal of General Microbiology 116:381–389
    [Google Scholar]
  15. Micklus J. M., Stein I. 1973; The colorimetric determination of mono and disubstituted guanidines. Analytical Biochemistry 54:545–553
    [Google Scholar]
  16. Miller D. L., Rodwell V. 1971; Metabolism of basic amino acids in Pseudomonas putida . Journal of Biological Chemistry 246:5053–5058
    [Google Scholar]
  17. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1974; Nucleic acid homologies in the genus Pseudomonas . International Journal of Systematic Bacteriology 23:333–339
    [Google Scholar]
  18. Prescott L. M., Jones M. E. 1969; Modified methods for determination of carbamylaspartate. Analytical Biochemistry 32:408–419
    [Google Scholar]
  19. Rikitake K., Oka I., Ando M., Yoshimoto T., Tsuru D. 1979; Creatinine amidohydrolase from P. putida: purification and some properties. Journal of Biochemistry 96:1104–1117
    [Google Scholar]
  20. Shimizu S., Kim J. M., Shinnen Y., Yamada M. 1986; Evaluation of two alternative metabolic pathways for creatinine degradation in microorganisms. Archives of Microbiology 145:322–328
    [Google Scholar]
  21. Stalon V., Ramos F., Piérard A., Wiame J. M. 1967; The occurrence of a catabolic and an anabolic ornithine carbamoyltrans-ferase in Pseudomonasfluorescens . Biochimica et Biophysica Acta 139:91–97
    [Google Scholar]
  22. Stalon V., Mercenier A. 1984; l-Arginine utilization by Pseudomonas species. Journal of General Microbiology 130:69–76
    [Google Scholar]
  23. Stalon V., Vander Wauven C., Momin P., Legrain C. 1987; Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria. Journal of General Microbiology 133:2487–2495
    [Google Scholar]
  24. Trijbels F., Vogels G. D. 1966a; Degradation of allantoin by Pseudomonas acidovorans . Biochimica et Biophysica Acta 113:292–301
    [Google Scholar]
  25. Trijbels F., Vogels G. D. 1966b; Allantoinase and ureidoglyco-lase in Pseudomonas and Penicillium species. Biochimica et Biophysica Acta 118:387–395
    [Google Scholar]
  26. Vander Wauven C., Stalon V. 1985; Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia . Journal of Bacteriology 164:882–886
    [Google Scholar]
  27. Vander Wauven C., Simon J. P., Slos P., Stalon V. 1986; Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Archives of Microbiology 145:386–390
    [Google Scholar]
  28. Van Eyck J. G., Vermaat R. J., Leijnse H. J., Leijnse B. 1968; The conversion of creatinine by creatininase of bacterial origin. Enzymologia 34:199–202
    [Google Scholar]
  29. Wargnies B., Lauwers N., Stalon V. 1979; Structure and properties of putrescine carbamoyltransferase of Streptococcus faecalis . European Journal of Biochemistry 101:145–152
    [Google Scholar]
  30. Yorifuji T., Sugai I. 1978; 3-Guanidinopropionate amidino-hydrolase and 4-guanidinobutyrate amidinohydrolase of Pseudomonas aeruginosa strain PAO. Agricultural and Biological Chemistry 42:1789–1790
    [Google Scholar]
  31. Yorifuji T., Kobayashi T., Tabuchi A., Shiratani Y., Yonoha K. 1983; Distribution of amidinohydrolase among Pseudomonas and comparative studies of some purified enzymes by onedimensional peptide mapping. Agricultural and Biological Chemistry 47:2825–2830
    [Google Scholar]
  32. Yorifuji T., Kanoeke M., Shimizu E., Shiota K., Matsuo R. 1989; Degradation of α,ω-guanidinoalkanes and a novel enzyme, diguanidinobutane amidinohydrolase in P. putida . Agricultural and Biological Chemistry 53:3003–3009
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-11-2307
Loading
/content/journal/micro/10.1099/00221287-136-11-2307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error