1887

Abstract

Azoverdin, a visible yellow, blue-white fluorescent compound produced by iron-limited ATCC 12334, was isolated from cell-free culture supernatant fluid and purified in the ferrated form to 98% purity by ion-exchange chromatography and reverse-phase high-performance liquid chromatography, thereby separating it from several related iron-binding fluorescent compounds. Purified ferrated azoverdin exhibited a pH-independent absorption spectrum which became pH-dependent following deferration, typical of a pyoverdin-like siderophore. Azoverdin enhanced Fe assimilation by iron-limited and therefore functioned as a siderophore. Iron-limited cells were unable to produce azoverdin when grown at 34 °C rather than 28 °C. However, these cells still expressed a 74 kDa and a 70 kDa iron-repressible outer membrane protein and were capable of azoverdin-mediated iron transport. The use of cells grown at 34 °C eliminated endogenous azoverdin production during iron uptake assays, which made it possible to accurately determine azoverdin-mediated Fe transport rates. Azoverdin-mediated Fe-uptake proceeded with an apparent of 0·2 μ and a of 0·46 ng Fe (10 cells) min.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-11-2297
1990-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/11/mic-136-11-2297.html?itemId=/content/journal/micro/10.1099/00221287-136-11-2297&mimeType=html&fmt=ahah

References

  1. Ankenbauer R., Hanne L. F., Cox C. D. 1986; Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production. Journal of Bacteriology 167:7–11
    [Google Scholar]
  2. Bachhawat A. K., Ghosh S. 1987; Iron transport in Azospirillum brasilense: role of the siderophore spirilobactin. Journal of General Microbiology 133:1759–1765
    [Google Scholar]
  3. Bachhawat A. K., Ghosh S. 1989; Temperature inhibition of siderophore production by Azosprillum brasilense . Journal of Bacteriology 171:4092–4094
    [Google Scholar]
  4. Briskot G., Taraz K., Budzikiewicz H. 1989; Pyoverdin-type siderophores from Pseudomonas aeruginosa . Liebigs Annalen der Chemie 1989:375–384
    [Google Scholar]
  5. Cody Y. S., Gross D. C. 1987; Characterization of pyoverdinPss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae . Applied and Environmental Microbiology 53:928–934
    [Google Scholar]
  6. Collinson S. K., Page W. J. 1989; Production of outer-membrane proteins and an extracellular fluorescent compound by iron-limited Azomonas macrocytogenes . Journal of General Microbiology 135:1229–1241
    [Google Scholar]
  7. Collinson S. K., Doran J. L., Page W. J. 1987; Production of 3,4-dihydroxybenzoic acid by Azomonas macrocytogenes and Azoto-bacter paspali . Canadian Journal of Microbiology 33:169–175
    [Google Scholar]
  8. Cox C. D. 1980; Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa . Journal of Bacteriology 142:581–587
    [Google Scholar]
  9. Cox C. D., Adams P. 1985; Siderophore activity of pyoverdin for Pseudomonas aeruginosa . Infection and Immunity 48:130–138
    [Google Scholar]
  10. Csáky T. Z. 1948; On the estimation of bound hydroxylamine in biological materials. Acta Chemica Scandinavica 2:450–454
    [Google Scholar]
  11. Demange P., Wendenbaum S., Linget C., Bateman A., Macleod J., Dell A., Albrecht A. -M., Abdallah M. A. 1989; Pseudomonas siderophores: structure and physicochemical properties of pyoverdins and related peptides. In Colloque INSERM 174 Second Forum on Peptides pp. 96–98 Aubry A., Marraud M., Vitoux B. Edited by Montrouge, France: J. Libbey Eurotext;
    [Google Scholar]
  12. Demange P., Wendenbaum S., Bateman A., Dell A., Meyer J. -M., Abdallah M. A. 1987; Bacterial siderophores: structure and physicochemical properties of pyoverdins and related compounds. In Iron Transport in Microbes, Plants and Animals pp. 167–187 Winkelmann G., Van der Helm D., Neilands J. B. Edited by Weinheim, FRG: VCH Verlagsgesellschaft;
    [Google Scholar]
  13. Demange P., Bateman A., Dell A., Abdallah M. A. 1988; Structure of azotobactin D, a siderophore of Azotobacter vinelandii strain D (CCM 289). Biochemistry 27:2745–2752
    [Google Scholar]
  14. De Smedt J., Bauwens M., Tygat R., De Ley J. 1980; Intra-and intergeneric similarities of ribosomal ribonucleic acid cistrons of free-living, nitrogen-fixing bacteria. International Journal of Systematic Bacteriology 30:106–122
    [Google Scholar]
  15. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas- like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. International Journal of Systematic Bacteriology 39:35–49
    [Google Scholar]
  16. De Weger L. A., Van Arendonk J. J. C. M., Recourt K., Van Der Hofstad G. A. J. M., Weisbeek P. J., Lugtenberg B. 1988; Siderophore-mediated uptake of Fe3+by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. Journal of Bacteriology 170:4693–4698
    [Google Scholar]
  17. Frost G. E., Rosenberg H. 1973; The inducible citrate-dependent iron transport system in Escherichia coli . Biochimica et Biophysica Acta 330:90–101
    [Google Scholar]
  18. Garibaldi J. A. 1971; Influence of temperature on the iron metabolism of a fluorescent pseudomonad. Journal of Bacteriology 105:1036–1038
    [Google Scholar]
  19. Garibaldi J. A. 1972; Influence of temperature on the biosynthesis of iron transport compounds by Salmonella typhimurium . Journal of Bacteriology 110:262–265
    [Google Scholar]
  20. Hohnadel D., Meyer J. -M. 1986; Pyoverdine-facilitated iron uptake among fluorescent pseudomonads. In Iron, Siderophores, and Plant Diseases pp. 119–129 Swinburne T. R. Edited by New York: Plenum Press;
    [Google Scholar]
  21. Hohnadel D., Meyer J. -M. 1988; Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. Journal of Bacteriology 170:4865–4873
    [Google Scholar]
  22. Ismail A., Bedell G. W., Lupan D. M. 1985; Effect of temperature on siderophore producton by Candida albicans . Biochemical and Biophysical Research Communications 132:1160–1165
    [Google Scholar]
  23. Johnstone D. B. 1957; The use of a fluorimeter in the characterization of fluorescing substances elaborated by Azotobacter . Applied Microbiology 5:103–106
    [Google Scholar]
  24. Johnstone D. B., Pfeffer M., Blanchard G. C. 1958; Fluorescence of Azotobacter, its chemical nature and bacteriological significance. In Abstracts of the VII International Congress of Microbiology pp. 386–387
    [Google Scholar]
  25. Knosp O., Von Tigerstrom M., Page W. J. 1984; Siderophore-mediated uptake of iron in Azotobacter vinelandii . Journal of Bacteriology 159:341–347
    [Google Scholar]
  26. Macdonald J. C., Bishop G. G. 1984; Spectral properties of a mixture of fluorescent pigments produced by Pseudomonas aeruginosa . Biochemica et Biophysica Acta 800:11–20
    [Google Scholar]
  27. Magazin M. D., Moores J. C., Leong J. 1986; Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas strain. Journal of Biological Chemistry 261:795–799
    [Google Scholar]
  28. Marugg J. D., Van Spanje M., Hoekstra W. P. M., Schippers B., Weisbeek P. J. 1985; Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. Journal of Bacteriology 164:563–570
    [Google Scholar]
  29. Meyer J. -M., Abdallah M. A. 1978; The fluorescent pigment of Pseudomonas fluorescens : biosynthesis, purification and physicochemical properties. Journal of General Microbiology 107:319–328
    [Google Scholar]
  30. Meyer J. -M., Halle F., Hohnadel D., Lemanceau P., Ratefiarivelo H. 1987; Siderophores of Pseudomonas- biological properties. In Iron Transport in Microbes, Plants and Animals pp. 189–205 Winkelmann G., Van der Helm D., Neilands J. B. Edited by Weinheim, FRG: VCH Verlagsgesellschaft;
    [Google Scholar]
  31. Mizuno T., Kageyama M. 1978; Separation and characterization of the outer membrane of Pseudomonas aeruginosa . Journal of Biochemistry 84:179–191
    [Google Scholar]
  32. Negrin R. S., Neilands J. B. 1978; Ferrichrome transport in inner membrane vesicles of Escherichia coli K12. Journal of Biological Chemistry 253:2339–2342
    [Google Scholar]
  33. Neilands J. B. 1984; Siderophores of bacteria and fungi. Microbiological Sciences 1:9–14
    [Google Scholar]
  34. Poppe K., Taraz K., Budzikiewicz H. 1987; Pyoverdine type siderophores from Pseudomonas fluorescens . Tetrahedron 43:2261–2272
    [Google Scholar]
  35. Tchan Y. -T., New P. B. 1984; Azotobacter. In Bergey’s Manual of Systematic Bacteriology 1 pp. 220–229 Holt J. G., Krieg N. R. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  36. Thompson J. P., Skerman V. B. D. 1979 Azotobacteraceae: the Taxonomy and Ecology of the Aerobic Nitrogen-Fixing Bacteria pp. 192–193196–197302–306 New York: Academic Press;
    [Google Scholar]
  37. Torres L., Perez-Ortin J. E., Tordera V., Beltran J. P. 1986; Isolation and characterization of an Fe(III)-chelating compound produced by Pseudomonas syringae . Applied and Environmental Microbiology 52:157–160
    [Google Scholar]
  38. Worsham P. L., Konisky J. 1984; Effect of growth temperature on the acquisition of iron by Salmonella typhimurium and Escherichia coli . Journal of Bacteriology 158:163–168
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-11-2297
Loading
/content/journal/micro/10.1099/00221287-136-11-2297
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error