1887

Abstract

We have cloned DNA fragments from 168S into , which produced a lytic zone on an agar medium containing cell wall. Sequencing of the fragments showed the presence of an open reading frame (ORF) which encodes a polypeptide of 272 amino acids with a molecular mass of 29919 Da. The deduced amino acid sequence showed considerable homology with that of the cell wall hydrolase gene of sp. (Potvin, C., Leclerc, D., Tremblay, G., Asselin, A. & Bellemare, G. (1988 ). and 214, 241-248). Accordingly, the gene was designated , for cell . The N-terminal amino acid sequence of gene product prepared from a clone was AIKVVKNLVSKSKYGLKCPN, which is consistent with that of the deduced sequence starting from Ala at second position from the initiation codon of the gene. A presumed σ promoter and a rho-independent terminator were found upstream and downstream of the ORF, respectively. A chloramphenicol-resistance determinant integrated into the ORF was mapped by PBS1 transduction, which indicated the gene sequence

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-11-2209
1990-11-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/11/mic-136-11-2209.html?itemId=/content/journal/micro/10.1099/00221287-136-11-2209&mimeType=html&fmt=ahah

References

  1. Akamatsu T., Sekiguchi J. 1987a; Genetic mapping and properties of filamentous mutations in Bacillus subtilis . Agricultural and Biological Chemistry 51:2901–2909
    [Google Scholar]
  2. Akamatsu T., Sekiguchi J. 1987b; Genetic mapping by means of protoplast fusion in Bacillus subtilis . Molecular and General Genetics 208:254–262
    [Google Scholar]
  3. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . Journal of Bacteriology 81:741–746
    [Google Scholar]
  4. Aymerich S., Gonzy-Tréboul G., Steinmetz M. 1986; 5′-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis . Journal of Bacteriology 166:993–998
    [Google Scholar]
  5. Ayusawa D., Yoneda Y., Yamane K., Maruo B. 1975; Pleiotropic phenomena in autolytic enzyme(s) content, flagellation, and simultaneous hyperproduction of extracellular α-amylase and protease in a Bacillus subtilis mutant. Journal of Bacteriology 124:459–469
    [Google Scholar]
  6. Dideberg O., Charlier P., Dive G., Joris B., Frére J. M., Ghuysen J. M. 1982; Structure of a Zn2+-containing d-alanyl-d-alanine-cleaving carboxypeptidase at 2·5 Å resolution. Nature; London: 299469–470
    [Google Scholar]
  7. Dubnau D., Goldthwaite C., Smith I., Marmur J. 1967; Genetic mapping in Bacillus subtilis . Journal of Molecular Biology 27:163–185
    [Google Scholar]
  8. Fein J. E. 1979; Possible involvement of bacterial autolytic enzymes in flagellar morphogenesis. Journal of Bacteriology 137:933
    [Google Scholar]
  9. Fein J. E., Rogers H. J. 1976; Autolytic enzyme deficient mutants of Bacillus subtilis 168. Journal of Bacteriology 127:1427–1442
    [Google Scholar]
  10. García P., García J. L., Ronda C., García E., López R. 1985; Cloning and expression of the pneumococcal autolysin gene in Escherichia coli . Molecular and General Genetics 201:225–230
    [Google Scholar]
  11. García P., García J. L., García E., López R. 1986; Nucleotide sequence and expression of the pneumococcal autolysin gene from its own promoter in Escherichia coli . Gene 43:265–272
    [Google Scholar]
  12. Ghuysen J. -M., Leyh-Bouille M., Bonaly R., Nieto M., Perkins H. R., Schleifer K. H., Kandler O. 1970; Isolation of DD carboxypeptidase from Streptomyces albus G culture filtrates. Biochemistry 9:2955–2961
    [Google Scholar]
  13. Guerry P., LeBlanc D. J., Falkow S. 1973; General method for the isolation of plasmid deoxyribonucleic acid. Journal of Bacteriology 116:1064–1066
    [Google Scholar]
  14. Guinand M., Michel G., Balassa G. 1976; Lytic enzymes in sporulating Bacillus subtilis . Biochemical and Biophysical Research Communications 68:1287–1293
    [Google Scholar]
  15. Hawley D. K., Mcclure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Research 11:2237–2255
    [Google Scholar]
  16. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  17. Henner D. J., Yang M., Ferrari E. 1988; Localization of Bacillus subtilis sacU (Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. Journal of Bacteriology 170:5102–5109
    [Google Scholar]
  18. Herbold D. R., Glaser L. 1975; Bacillus subtilis N-acetylmuramic acid l-alanine amidase. Journal of Biological Chemistry 250:1676–1682
    [Google Scholar]
  19. Joris B., Beeumen J. V., Casagrande F., Gerday C., Frére J. -M., Ghuysen J. -M. 1983; The complete amino acid sequence of the Zn2+-containing d-alanyl-d-alanine-cleaving carboxypeptidase of Streptomyces albus G . European Journal of Biochemistry 130:53–69
    [Google Scholar]
  20. Mendelson N. H. 1982; Bacterial growth and division: genes, structures, forces, and clocks. Microbiological Reviews 46:341–375
    [Google Scholar]
  21. Murao S., Takahara Y. 1974; Enzymes lytic against Pseudomonas aeruginosa produced by Bacillus subtilis YT-25. Agricultural and Biological Chemistry 38:2305–2316
    [Google Scholar]
  22. Okada S., Kitahata S. 1973; Purification and some properties of bacterial lysozyme. Journal of Fermentation Technology 51:705–712
    [Google Scholar]
  23. Potvin C., Leclerc D., Tremblay G., Asselin A., Bellemare G. 1988; Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli . Molecular and General Genetics 214:241–248
    [Google Scholar]
  24. Rogers H. J., Perkins H. R., Ward J. B. 1980 Microbial Cell Walls and Membranes London: Chapman and Hall;
    [Google Scholar]
  25. Rogers H. J., Taylor C., Rayter S., Ward J. B. 1984; Purification and properties of autolytic endo-β-N-acetylglucos- aminidase and the N-acetylmuramyl-l-alanine amidase from Bacillus subtilis strain 168. Journal of General Microbiology 130:2395–2402
    [Google Scholar]
  26. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochimica et Biophysica Acta 72:619–629
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  28. Schaeffer P., Millet J., Aubert J. P. 1965; Catabolite repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America 54:704–711
    [Google Scholar]
  29. Sekiguchi J., Ezaki B., Kodama K., Akamatsu T. 1988; Molecular cloning of a gene affecting the autolysin level and flagellation in Bacillus subtilis . Journal of General Microbiology 134:1611–1621
    [Google Scholar]
  30. Sharp P. A., Sugden B., Sambrook J. 1973; Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. Biochemistry 12:3055–3063
    [Google Scholar]
  31. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America 44:1072–1078
    [Google Scholar]
  32. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  33. Zeigler D. R., Dean D. H. 1989 Bacillus Genetic Stock Center Strains & Data, 4th edn. Columbus: The Ohio State University;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-11-2209
Loading
/content/journal/micro/10.1099/00221287-136-11-2209
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error