Degradation of -Toluenesulphonic Acid via Sidechain Oxidation, Desulphonation and Ring Cleavage in T-2 Free

Abstract

T-2 completely converted -toluenesulphonic acid (TS) or -sulphobenzoic acid (PSB) to cell material, CO and sulphate, with growth yields of about 5 g protein (mol C). PSB and sulphite were excreted as transient intermediates during growth in TS-salts medium. All reactions of a catabolic pathway involving sidechain oxidation and cleavage of the sulphonate moiety as sulphite were measurable in the soluble portion of cell extracts. Degradation of TS and PSB was inducible and apparently involved at least two regulons. TS was converted to -sulphobenzyl alcohol in a reaction requiring NAD(P)H and 1 mol O (mol TS). This alcohol was in an equilibrium (in the presence of NAD) with -sulphobenzaldehyde, which was converted to PSB in an NAD(P)-dependent reaction. PSB was desulphonated to protocatechuic acid in a reaction requiring NAD(P)H and 1 mol O (mol PSB). Experiments with O confirmed involvement of a dioxygenase, because both atoms of this molecular oxygen were recovered in protocatechuate. Protocatechuate was converted to 2-hydroxy-4-carboxymuconate semialdehyde by a 4,5-dioxygenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-7-1969
1989-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/7/mic-135-7-1969.html?itemId=/content/journal/micro/10.1099/00221287-135-7-1969&mimeType=html&fmt=ahah

References

  1. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Analytical Biochemistry 72:248–254
    [Google Scholar]
  2. Bretscher H. 1981; Waste disposal in the chemical industry.. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds pp. 65–74 Leisinger T., Cook A. M., Hütter R., Nüesch J. Edited by London: Academic Press;
    [Google Scholar]
  3. Brilon C., Beckmann W., Hellwig M., Knack-Muss H.-J. 1981a; Enrichment and isolation of naphthalenesulfonic acid-utilizing pseudomonads.. Applied and Environmental Microbiology 42:39–43
    [Google Scholar]
  4. Brilon C., Beckmann W., Knackmuss H.-J. 1981b; Catabolism of naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22.. Applied and Environmental Microbiology 42:44–55
    [Google Scholar]
  5. Cain R.B. 1981; Microbial degradation of surfactants and ‘builder’ components.. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds pp. 323–370 Leisinger T., Cook A. M., Hütter R., Nüesch J. Edited by London: Academic Press;
    [Google Scholar]
  6. Cain R.B., Farr D.R. 1968; Metabolism of arylsulphonates by micro-organisms.. Biochemical Journal 106:859–877
    [Google Scholar]
  7. Cook A.M. 1987; Biodegradation of j-triazine xenobiotics.. FEMS Microbiology Reviews 46:93–116
    [Google Scholar]
  8. Cook A.M., Hütter R. 1981; s-Triazines as nitrogen sources for bacteria.. Journal of Agricultural and Food Chemistry 29:1135–1143
    [Google Scholar]
  9. Cook A.M., Grossenbacher H., Hütter R. 1984; Bacterial degradation of jV-cyclopropylmel- amine. The steps to ring cleavage.. Biochemical Journal 122:315–320
    [Google Scholar]
  10. Dagley S., Patel M.D. 1957; Oxidation of p- cresol and related compounds by a Pseudomonas.. Biochemical Journal 66:227–233
    [Google Scholar]
  11. Darbre A. 1970; Esterification.. In Handbook of Derivatives for Chromatography pp. 39–103 Blau K., King G. S. Edited by London: Heyden;
    [Google Scholar]
  12. Endo K., Kondo H., Ishimoto M. 1977; Degradation of benzenesulphonate to sulphite in bacterial extract.. Journal of Biochemistry 82:1397–1402
    [Google Scholar]
  13. Feigel B., Knackmuss H.-J. 1988; Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid.. FEMS Microbiology Letters 55:113–118
    [Google Scholar]
  14. Fewson C.A. 1981; Biodegradation of aromatics with industrial relevance.. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds pp. 141–179 Leisinger T., Cook A. M., Hütter R., Nüesch J. Edited by London: Academic Press;
    [Google Scholar]
  15. Fewson C.A. 1988; Microbial metabolism of mandelate: a microcosm of diversity.. FEMS Microbiology Reviews 54:85–110
    [Google Scholar]
  16. Focht D.D., Williams F.D. 1970; The degradation of p-toluenesulphonate by a Pseudomonas.. Canadian Journal of Microbiology 16:309–316
    [Google Scholar]
  17. Gibson D.T., Yeh W., Lin T., Subramanian V. 1982; Toluene dioxygenase: a multicomponent enzyme system from Pseudomonas putida.. In Oxygenases and Oxygen Metabolism pp. 51–61 Nozaki M., Yamamoto S., Ishimura Y., Coon M. J., Ernster L., Estabrook R. W. Edited by New York: Academic Press;
    [Google Scholar]
  18. Grant W.M. 1947; Colorimetric determination of sulphur dioxide.. Analytical Chemistry 19:345–346
    [Google Scholar]
  19. Greenberg A.E., Connors J.J., Jenkins D.editors 1981; Organic carbon (total): combustion- infrared method.. In Standard Methods for the Examination of Water and Wastewater, 15th edn. pp. 471–475 Washington, DC: American Public Health Association;
    [Google Scholar]
  20. Grossenbacher H., Thurnheer T., Zürrer D., Cook A.M. 1986; Determination of sulfonated azo dyestuffs and their bacterial metabolites by high pressure liquid chromatography.. Journal of Chromatography 360:219–223
    [Google Scholar]
  21. Heyman J.J., Molof A.H. 1968; Biodegradation of linear alkylated sulphonates.. Environmental Science and Technology 2:773–778
    [Google Scholar]
  22. Hopper D.J. 1978; Incorporation of [18OJwater in the formation of p-hydroxybenzyl alcohol by the p- cresol methylhydroxylase from Pseudomonas putida.. Biochemical Journal 175:345–347
    [Google Scholar]
  23. Irie S., Doi S., Yorifuji T., Takagi M., Yano K. 1987; Nucleotide sequencing of the genes encoding benzene oxidation enzymes of Pseudomonas putida.. Journal of Bacteriology 169:5174–5179
    [Google Scholar]
  24. Johnston J.B., Murray K., Cain R.B. 1975; Microbial metabolism of aryl sulphonates. A reassessment of colorimetric methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates.. Antonie van Leeuwenhoek 41:493–511
    [Google Scholar]
  25. Kondo H., Yazawa M., Enami H., Ishimoto M. 1982; Sulphite production from benzenesulphonate by bacterial enzyme.. (In Japanese) Ganryu Aminosan 5:237–242
    [Google Scholar]
  26. Kulla H.G., Klausener U., Meyer U., Lüdecke B., Leisinger T. 1983; Interference of aromatic sulpho groups in the microbial degradation of the azo dyes Orange I and Orange II.. Archives of Microbiology 135:1–7
    [Google Scholar]
  27. Laskin A.I., Lechevalier H.A. editors editor CRC Handbook of Microbiology, 2nd edn.. 5 pp. 111–127576 Boca Raton: CRC Press;
    [Google Scholar]
  28. Locher H.H., Thurnheer T., Leisinger T., Cook A.M. 1989; 3-Nitrobenzenesulfonic acid, 3- aminobenzenesulfonic acid and 4-aminobenzenesul- fonic acid as sole carbon sources for bacteria.. Applied and Environmental Microbiology 55:492–494
    [Google Scholar]
  29. Mackintosh R.W., Fewson C.A. 1988; Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus.. Biochemical Journal 250:743–751
    [Google Scholar]
  30. Malle K.G. 1978 Wie schmutzig ist der Rhein? Chemie in unserer Zeit 12:111–122
    [Google Scholar]
  31. Meyer U. 1981; Biodegradation of synthetic organic colorants.. In Microbial Degradation of Xenobiotics and Recalcitrant Compounds pp. 371–385 Leisinger T., Cook A. M., Hutter R., Niiesch J. Edited by London: Academic Press;
    [Google Scholar]
  32. Nörtemann B., Baumgarten J., Rast H.G., Knackmuss H.-J. 1986; Bacterial communities degrading amino- and naphthalene-2-sulfonates.. Applied and Environmental Microbiology 52:1195–1202
    [Google Scholar]
  33. Ribbons D.W., Evans W.C. 1961; Oxidative metabolism of protocatechuic acid by certain soil pseudomonads: a new ring-fission mechanism.. Biochemical Journal 83:482–492
    [Google Scholar]
  34. Schauder R., Eikmanns B., Thauer R.K., Widdel F., Fuchs G. 1986; Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle.. Archives of Microbiology 145:162–172
    [Google Scholar]
  35. Scholtz R., Leisinger T., Suter F., Cook A.M. 1987; Characterization of 1-chlorohexane halido- hydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp.. Journal of Bacteriology 169:5016–5021
    [Google Scholar]
  36. Swisher R.D. 1987 Surfactant Biodegradation, 2nd edn.. pp. 517–645 New York: Marcel Dekker;
    [Google Scholar]
  37. Thurnheer T. 1988 Mikrobieller Abbau von sub- stituierten Benzolsulfonsauren PhD thesis Swiss Federal Institute of Technology, Zurich;
    [Google Scholar]
  38. Thurnheer T., Kohler T., Cook A.M., Leisinger T. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation.. Journal of General Microbiology 132:1215–1220
    [Google Scholar]
  39. Willetts A.J., Cain R.B. 1972; Microbial metabolism of alkylbenzene-p-sulphonate and do- decylbenzene-p-sulphonate.. Biochemical Journal 129:389–402
    [Google Scholar]
  40. Wittich R.M., Rast H.G., Knackmuss H.-J. 1988; Degradation of naphthalene-2,6- and naphthalene-1,6-disulfonic acid by a Moraxella sp.. Applied and Environmental Microbiology 54:1842–1847
    [Google Scholar]
  41. Zürrer D., Cook A.M., Leisinger T. 1987; Microbial desulfonation of substituted naphthalene- sulfonic acids and benzenesulfonic acids.. Applied and Environmental Microbiology 53:1459–1463
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-7-1969
Loading
/content/journal/micro/10.1099/00221287-135-7-1969
Loading

Data & Media loading...

Most cited Most Cited RSS feed