1887

Abstract

Extracts of grown aerobically on xylose contained xylitol dehydrogenase and -xylose reductase activities. Extracts of cells grown on glucose contained one-tenth as much xylose reductase and no detectable xylitol dehydrogenase. The xylitol dehydrogenase was purified to near homogeneity, and is a tetramer of 45 kDa subunits. This labile enzyme, could be stabilized by glycerol (25%) and was rapidly inactivated by 10 m-EDTA. It catalyses the reversible, NAD-dependent oxidation of xylitol to xylulose. Apparent values are 19 m-xylitol and 0·3 m-NAD at 30 °C, pH 8·5. Partially purified preparations of xylose reductase catalysed the NADPH-dependent reduction of -xylose to xylitol, and were 16 times as active with 33 m--glyceraldehyde as with 33 m--xylose. Apparently grown on xylose has the necessary enzymes to convert xylose to xylulose by the oxidoreductive pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-6-1537
1989-06-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/6/mic-135-6-1537.html?itemId=/content/journal/micro/10.1099/00221287-135-6-1537&mimeType=html&fmt=ahah

References

  1. Bicho P. A., Runnals P. L., Cunningham J. D., Lee H. 1988; Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Applied and Environmental Microbiology 54:50–54
    [Google Scholar]
  2. Bolen P. L., Roth K. A., Freer S. N. 1986; Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus. Applied and Environmental Microbiology 52:660–664
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  4. Bruinenberg P. M., De Bot P. H. M., Van Dijken J. P., Scheffers W. A. 1984; NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Applied Microbiology and Biotechnology 19:256–260
    [Google Scholar]
  5. Chiang C., Knight S. G. 1960; Metabolism of d-xylose by moulds. Nature; London: 18879–81
    [Google Scholar]
  6. Ditzelmüller G., Kubicek C. P., Wöhrer W., Röhr M. 1984a; Xylose metabolism in Pachysolen tannophilus: purification and properties of xylose reductase. Canadian Journal of Microbiology 30:1330–1336
    [Google Scholar]
  7. Ditzelmüller G., Kubicek C. P., Wöhrer W., Röhr M. 1984b; Xylitol dehydrogenase from Pachysolen tannophilus. FEMS Microbiology Letters 25:195–198
    [Google Scholar]
  8. Eisenthal R., Cornish-Bowden A. 1974; The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochemical Journal 139:715–720
    [Google Scholar]
  9. Höfer M., Betz A., Kotyk A. 1971; Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. IV. Induction of an enzyme necessary for d-xylose catabolism. Biochimica et biophysica acta 252:1–12
    [Google Scholar]
  10. Horitsu H., Tomoeda M. 1966; Pentose metabolism by Candida utilis. III. Polyol: NAD oxidoreductase. Agricultural and Biological Chemistry 30:962–966
    [Google Scholar]
  11. Horitsu H., Tomoeda M., Kumagai K. 1968; Pentose metabolism in Candida utilis. IV. NADP specific polyol dehydrogenase. Agricultural and Biological Chemistry 32:514–517
    [Google Scholar]
  12. Jörnvall H., Persson B., Jeffery J. 1987; Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. European Journal of Biochemistry 167:195–201
    [Google Scholar]
  13. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  14. Morimoto S., Matsuo M., Azuma K., Sinskey A. J. 1986; Purification and properties of d-xylulose reductase from Pachysolen tannophilus. Journal of Fermentation Technology 64:219–225
    [Google Scholar]
  15. Sheys G. H., Doughty C. C. 1971; The reaction mechanism of aldose reductase from Rhodotorula. Biochimica et biophysica acta 242:523–531
    [Google Scholar]
  16. Smiley K. L., Bolen P. L. 1982; Demonstration of d-xylose reductase and d-xylitol dehydrogenase in Pachysolen tannophilus. Biotechnology Letters 4:607–610
    [Google Scholar]
  17. Sugai J. K., Veiga L. A. 1981; Purification and properties of the xylitol dehydrogenase from Pullularia pullulans. Anais da Academia brasileira de ciencias 53:183–193
    [Google Scholar]
  18. Sugai J. K., Veiga L. A. 1988; Induction of the xylitol dehydrogenase of Pullularia pullulans. Canadian Journal of Microbiology 34:107–111
    [Google Scholar]
  19. Suihko M. -L., Suomalainen I., Enari T. -M. 1983; d-Xylose catabolism in Fusarium oxysporum. Biotechnology Letters 5:525–530
    [Google Scholar]
  20. Tomoyeda M., Horitsu H. 1964; Pentose metabolism by Candida utilis. I. Xylose isomerase. Agricultural and Biological Chemistry 28:139–143
    [Google Scholar]
  21. Veiga L. A. 1968a; Polyol dehydrogenases in Candida albicans. I. Reduction of d-xylose to xylitol. Journal of General and Applied Microbiology 14:65–78
    [Google Scholar]
  22. Veiga L. A. 1968b; Polyol dehydrogenases in Candida albicans. II. Xylitol oxidation to d-xylulose. Journal of General and Applied Microbiology 14:79–87
    [Google Scholar]
  23. Verduyn C., Van Kleef R., Frank J. Jzn Schreuder W., Van Dljken J. P., Scheffers W. A. 1985; Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochemical Journal 226:669–677
    [Google Scholar]
  24. Vongsuvanlert V., Tani Y. 1988a; Characterization of d-sorbitol dehydrogenase involved in d- sorbitol production of a methanol yeast, Candida boidinii (Kloeckera sp.) no. 2201. Agricultural and Biological Chemistry 52:419–426
    [Google Scholar]
  25. Vongsuvanlert V., Tani Y. 1988b; Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose. Agricultural and Biological Chemistry 52:1817–1824
    [Google Scholar]
  26. Warburg O., Christian W. 1941; Isolierung und kristallisation des Garungsferments Enolase. Biochemische Zeitschrift 310:384–421
    [Google Scholar]
  27. Watson J. A., Hayashi J. A., Schuytema E., Doughty C. C. 1969; Identification of reduced nicotinamide adenine dinucleotide phosphate- dependent aldehyde reductase in a Rhodotorula strain. Journal of Bacteriology 100:110–116
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-6-1537
Loading
/content/journal/micro/10.1099/00221287-135-6-1537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error