Multilayered Distribution of Peptidoglycan in the Periplasmic Space of Free

Abstract

When a staining technique using phosphotungstic acid (PTA) in 10% (w/v) chromic acid was applied to cells of , the periplasmic space was seen as a dark 15-nm-thick layer of uniform appearance and constant width. Our observations are consistent with peptidoglycan being the main material stained. Isolated sacculi as well as purified peptidoglycan (protein free) were also stained by the same procedure, the thickness of the peptidoglycan being 8·8 ± 1·8 and 6·6 ± 1·5 nm, respectively. The increased thickness of the PTA-stained layer in stationary phase cells correlated well with the increased thickness of isolated sacculi or purified peptidoglycan and with the increased amount of peptidoglycan in such cells. Thickness measurements on isolated peptidoglycan were compatible with a two to three layer structure for material from exponential phase cells and with a four to five layer structure for that from stationary phase cells. Furthermore, the results indicated an uneven distribution of peptidoglycan material in the periplasmic space, the peptidoglycan spanning the space from the inner to the outer membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-5-1243
1989-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/5/mic-135-5-1243.html?itemId=/content/journal/micro/10.1099/00221287-135-5-1243&mimeType=html&fmt=ahah

References

  1. Brass J., Higgins C.F., Foley M., Rugman P.A., Birmingham J., Garland P.B. 1986; Lateral diffusion of proteins in the periplasm of Escherichia coli . Journal of Bacteriology 165:787–794
    [Google Scholar]
  2. Braun V., Rehn K. 1969; Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. European Journal of Biochemistry 10:426–438
    [Google Scholar]
  3. Burman L.G., Park J.T. 1983; Changes in the composition of Escherichia coli murein as it ages during exponential growth. Journal of Bacteriology 155:447–453
    [Google Scholar]
  4. De Petris S. 1967; Ultrastructure of the cell wall of Escherichia coli and chemical nature of its constituents layers. Journal of Ultrastructure Research 19:45–83
    [Google Scholar]
  5. Dietzler D., Leckie M., Lay C. 1973; Rates of glycogen synthesis and the cellular levels of ATP and FDP during exponential growth and the nitrogen-limited stationary phase of Escherichia coli W4597 (K). Archives of Biochemistry and Biophysics 156:684–693
    [Google Scholar]
  6. Dubochet J., Mcdowall A.W., Menge B., Schmid E.N., Lickfeld K.G. 1983; Electron microscopy of frozen-hydrated bacteria. Journal of Bacteriology 155:381–390
    [Google Scholar]
  7. Fréhel C., Ryter A. 1982; Electron microscopic cytochemical study of cell-wall polysaccharides in Bacillus subtilis and two strains of Bacillus megaterium . Journal of Ultrastructure Research 81:66–77
    [Google Scholar]
  8. FrÉhel C., Robbe P., Tinelli R., Ryter A. 1982; Relationship between biochemical and cytochemical results obtained on Bacillus megaterium and Bacillus subtilis cell-wall polysaccharides. Journal of Ultrastructure Research 81:78–87
    [Google Scholar]
  9. Glauner B., HÖltje J.-V., Schwarz U. 1988; The composition of the murein of Escherichia coli . Journal of Biological Chemistry 263:10088–10095
    [Google Scholar]
  10. Goodell E.W., Markiewicz Z., Schwarz U. 1983; . Absence of oligomeric murein intermediates in Escherichia coli . Journal of Bacteriology 156:130–135
    [Google Scholar]
  11. Van Heijenoort Y., Leduc M., Singer H., Van Heijenoort J. 1987; Effects of moenomycin on Escherichia coli . Journal of General Microbiology 133:667–674
    [Google Scholar]
  12. Hobot J.A., Carlemalm E., Villiger W., Kellenberger E. 1984; Periplasmic gel: a new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. Journal of Bacteriology 160:143–152
    [Google Scholar]
  13. Hughes R.G., Thurman P.F. 1970; Cross linking of bacterial cell walls with glutaraldehyde. Biochemical Journal 119:925–926
    [Google Scholar]
  14. Inouye M. 1979 Bacterial Outer Membranes. Biogenesis and Functions p. 67 New York:: John Wiley.;
    [Google Scholar]
  15. Ishidate K., Creeger E.S., Zrike J., Deb S., Glauner B., Macalister T.J., Rothfield L.I. 1986; Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhirpurium, including a fraction containing attachment sites between the inner and outer membranes and the murein skeleton of the cell envelope. Journal of Biological Chemistry 261:428–443
    [Google Scholar]
  16. Labischinski H., Barnickel G., Naumann D., Keller P. 1985; Conformational and topological aspects of the three-dimensional architecture of bacterial peptidoglycan. Annales de l’Institut Pasteur/ Microbiologie 136A:45–50
    [Google Scholar]
  17. Leduc M., Rousseau M., Van Heijenoort J. 1977; Structure of the cell wall of Bacillus species CIP 76-111. European Journal of Biochemistry 80:153–163
    [Google Scholar]
  18. Leduc M., Van Heijenoort J. 1980; Autolysis of Escherichia coli . Journal of Bacteriology 142:52–59
    [Google Scholar]
  19. Leduc M., Kasra R., Van Heijenoort J. 1982; Induction and control of the autolytic system of Escherichia coli . Journal of Bacteriology 152:26–34
    [Google Scholar]
  20. Leduc M., FrÉhel C., Van Heijenoort J. 1985; Correlation between degradation and ultrastructure of peptidoglycan during autolysis of Escherichia coli . Journal of Bacteriology 161:627–635
    [Google Scholar]
  21. Leutgeb W., Weidel W. 1963; Uber ein in Coli- Zellwandpräparaten zurückgehaltenes Glykogen. Zeitschrift für Naturforschung 18b:1060–1062
    [Google Scholar]
  22. Martoja R., SzÖllÖsi A., Truchet M. 1975; Microanalyse et cytochimie. Journal de microscopie et de biologie cellulaire 22:247–260
    [Google Scholar]
  23. Mengin-Lecreulx D., Van Heijenoort J. 1985; Effect of growth conditions on peptidoglycan content and cytoplasmic steps of its biosynthesis in Escherichia coli . Journal of Bacteriology 163:208–212
    [Google Scholar]
  24. Murray R.G.E., Steed P., Elson H.E. 1965; The location of the mucopeptide in sections of the cell wall of Escherichia coli and other Gram-negative bacteria. Canadian Journal of Microbiology 11:547–560
    [Google Scholar]
  25. Newman G.R., Hobot J.A. 1987; Modern acrylics for post-embedding immunostaining techniques. Journal of Histochemistry and Cytochemistry 35:971–981
    [Google Scholar]
  26. Oldmixon E.H., Glauser S., Higgins M.L. 1974; Two proposed general configurations for bacterial cell wall peptidoglycans shown by space-filling molecular models. Biopolymers 13:2037–2060
    [Google Scholar]
  27. Oliver D.B. 1987; Periplasm and protein secretion. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology p. 56 Neidhart F. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Pisabarro A.G., De Pedro M.A., Vazquez D. 1985; Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. Journal of Bacteriology 161:238–242
    [Google Scholar]
  29. Preiss J. 1984; Bacterial glycogen synthesis and its regulation. Annual Review of Microbiology 38:419–458
    [Google Scholar]
  30. Rambourg A. 1969; Localisation ultrastructurale et nature du matériel coloré au niveau de la surface cellulaire par le mélange chromique-phosphotungstique. Journal de microscopie 8:325–342
    [Google Scholar]
  31. Rogers H.J., Perkins H.R., Ward J.B. 1980 Microbial Cell Walls and Membranes p. 437 London:: Chapman & Hall.;
    [Google Scholar]
  32. Roland J.C., Lembi C.A., Morre D.J. 1972; Phosphotungstic acid chromic as a selective electron dense stain for plasma membrane of plant cells. Staining Technology 47:195–200
    [Google Scholar]
  33. Rousseau M., Hermier J. 1975; Localisation en microscopic électronique des polysaccharides de la paroi chez les bactéries en sporulation. Journal de microscopie et de biologie cellulaire 23:237–248
    [Google Scholar]
  34. Thiery J.-P. 1976; Mise en évidence des polysac charides sur coupes fines en microscopie électronique. Journal de microscopie 6:989–1018
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-5-1243
Loading
/content/journal/micro/10.1099/00221287-135-5-1243
Loading

Data & Media loading...

Most cited Most Cited RSS feed