1887

Abstract

strain CF600 is able to utilize phenol and 3,4-dimethylphenol as sole carbon and energy source. We demonstrate that growth on these substrates is by virtue of plasmid-encoded phenol hydroxylase and a -cleavage pathway. Screening of a genomic bank, with DNA from the previously cloned catechol 2,3-dioxygenase gene of the TOL plasmid pWW0, was used in the identification of a clone which could complement a phenol-hydroxylase-deficient transposon insertion mutant. Deletion mapping and polypeptide production analysis identified a 1·2 kb region of DNA encoding a 39·5 kDa polypeptide which mediated this complementation. Enzyme activities and growth properties of strains harbouring this fragment on a broad-host-range expression vector indicate that phenol hydroxylase is a multicomponent enzyme containing the 39·5 kDa polypeptide as one component.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-5-1083
1989-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/5/mic-135-5-1083.html?itemId=/content/journal/micro/10.1099/00221287-135-5-1083&mimeType=html&fmt=ahah

References

  1. Bagdasarian M.M., Amann E., Lurz R., Rueckert B., Bagdasarian M. 1983; Activity of the hybrid trp-lac (tac) promoter of Escherichia coli inPseudomonas putida. Construction of broad host range controlled expression vectors. Gene 26:273–282
    [Google Scholar]
  2. Cane P.A., Williams P.A. 1986; A restriction map of naphthalene catabolic plasmid pWW60-l and the location of some of its catabolic genes. Journal of General Microbiology 132:2919–2929
    [Google Scholar]
  3. Chakrabarty A.M. 1972; Genetic basis of the biodegradation of salicylate in Pseudomonas . Journal of Bacteriology 112:815–823
    [Google Scholar]
  4. Chakrabarty A.M. (editor) 1982 Biodegradation and Detoxification of Environmental Pollutants. Boca Raton, Florida:: CRC Press.;
    [Google Scholar]
  5. Dagley S. 1986; Biochemistry of aromatic hydrocarbon degradation in Pseudomonas . In The Bacteria X The Biology of Pseudomonas pp 527–556 Sokatch J. R. Edited by London: Academic Press;
    [Google Scholar]
  6. Fennewald M., Prevatt W., Meyer R., Shapiro J. 1978; Isolation of IncP-2 DNA from Pseudomonas aeruginosa . Plasmid 1:164–173
    [Google Scholar]
  7. Franklin F.C.H., Bagdasarian M., Bagdasarian M.M., Timmis K.N. 1981; Molecular and functional analysis of the TOL plasmid pWW0 from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta-cleavage pathway. Proceedings of the National Academy of Sciences of the United States of America 18:7458–7462
    [Google Scholar]
  8. Frantz B., Chakrabarty A.M. 1986; Degrada-tive plasmids in Pseudomonas . In The Bacteria X The Biology of Pseudomonas pp 295–317 Sokatch J. R. Edited by London: Academic Press;
    [Google Scholar]
  9. Frey J., Bagdasarian M., Feiss D., Franklin F.C.H., Deshusses J. 1983; Stable cosmid vectors that enable the introduction of cloned fragments into a wide range of Gram-negative bacteria. Gene 24:299–308
    [Google Scholar]
  10. Fürste J.P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. 1986; Molecular cloning of the RP4 DNA primase region in a multirange tacP expression vector. Gene 48:119–131
    [Google Scholar]
  11. Gibson D.T. (editor) 1984 Microbial Degradation of Organic Compounds, 13 New York:: Marcel Dekker.;
    [Google Scholar]
  12. Hansen J.B., Olsen R.H. 1978; Isolation of large bacterial plasmids and characterisation of the P-2 incompatability group plasmids pMGl and pMG5. Journal of Bacteriology 135:227–238
    [Google Scholar]
  13. Holmes D.S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 14:193–197
    [Google Scholar]
  14. Jacoby G.A. 1974; Properties of an R plasmid in Pseudomonas aeruginosa producing amikacin (BB- K8), butirosin, kanamycin, tobramycin, and sisomi- cin resistance. Antimicrobial Chemotherapy 6:807810
    [Google Scholar]
  15. Jacoby G.A. 1977; Classification of plasmids in Pseudomonas aeruginosa . In Microbiology - 1977, pp 119–126 Schlessinger D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Kahn M., Kolter R., Thomas C.M., Meyer R., Remaut E., Helinski D.R. 1979; Plasmid cloning vehicles derived from plasmids ColEl, F, R6K and RK2. Methods in Enzymology 68:268–280
    [Google Scholar]
  17. Kushner S.R. 1978; An improved method for transformation of Eschericia coli with the ColEl derived plasmids. In Genetic Engineering, pp 17–23 Boyer H. W., Nicosia S. Edited by Amsterdam: Elsevier/North Holland;
    [Google Scholar]
  18. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Ornston L.N., Yeh W.-K. 1982; Recurring themes and repeated sequences in metabolic evolution. In Biodegradation and Detoxification of Environmental Pollutants, pp 105–126 Chakrabarty A. M. Edited by Boca Raton, Florida: CRC Press;
    [Google Scholar]
  20. Rheinwald J.G., Chakrabarty A.M., Gunsalus I.C. 1973; A transmissible plasmid controlling camphor oxidation in Pseudomonas putida . Proceedings of the National Academy of Sciences of the United States of America 70:885–889
    [Google Scholar]
  21. Sala-Trepat J. M., Murray K., Williams P. A. 1972; The metabolic divergence in the metacleavage of catechols by Pseudomonas putida NCIB10015, physiological significance and evolutionary implications. European Journal of Biochemistry 28347–356
    [Google Scholar]
  22. Sancar A., Hack A.M., Rupp W.D. 1979; Simple method for the identification of plasmid- coded proteins. Journal of Bacteriology 137:692–693
    [Google Scholar]
  23. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gramnegative bacteria. Biotechnology 1:784–790
    [Google Scholar]
  24. Spooner R.A., Bagdasarian M., Franklin F.C.H. 1987; Activation of the xylDLEGF promoter of the TOL, toluene/xylene degradation pathway, by overproduction of the xylS regulatory gene product. Journal of Bacteriology 169:3581–3586
    [Google Scholar]
  25. Timmis K.N., Lehrbach P.R., Harayama S., Don R.H., Mermod N., Bas S., Leppik R., Weightman A.J., Reineke W., Knackmuss H.-J. 1985; Analysis and manipulation of plasmid- encoded pathways for the catabolism of aromatic compounds by soil bacteria. In Plasmids in Bacteria, pp 719–739 Helinski D. R., Cohen S. N., Hewell D. B., Jackson D. A., Hollaender A. Edited by New York: Plenum;
    [Google Scholar]
  26. Williams P.A., Murray K. 1974; Metabolism of benzoate and methylbenzoate by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. Journal of Bacteriology 120:416–423
    [Google Scholar]
  27. Worsey M.J., Franklin F.C.H., Williams P.A. 1978; Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2. Journal of Bacteriology 134:757–764
    [Google Scholar]
  28. Yen K.-M., Gunsalus I.C. 1985; Regulation of naphthalene catabolic genes of NAH7. Journal of Bacteriology 162:1008–1013
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-5-1083
Loading
/content/journal/micro/10.1099/00221287-135-5-1083
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error