1887

Abstract

Five strains of Gram-negative denitrifying bacteria that used various ketones as sole carbon and energy sources were isolated from activated sludge from a municipal sewage plant. Three strains are related to the genus two non-motile species have not yet been affiliated. All strains grew well with ketones and fatty acids (C to C), but sugars were seldom utilized. The physiology of anaerobic acetone degradation was studied with strain BunN, which was originally enriched with butanone. Bicarbonate was essential for growth with acetone under anaerobic and aerobic conditions, but not if acetate or 3-hydroxybutyrate were used as substrates. An apparent value of 5·6 m-bicarbonate was determined for growth with acetone in batch culture. The molar growth yield was 24·8–29·8 g dry cell matter (mol acetone consumed), with nitrate as the electron acceptor in batch culture; it varied slightly with the extent of poly--hydroxybutyric acid (PHB) formation. During growth with acetone, CO was incorporated mainly into the C-1 atom of the monomers of the storage polymer PHB. With 3-hydroxybutyrate as substrate, CO incorporation into PHB was negligible. The results provide evidence that acetone is channelled into the intermediary metabolism of this strain via carboxylation to acetoacetate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-4-883
1989-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/4/mic-135-4-883.html?itemId=/content/journal/micro/10.1099/00221287-135-4-883&mimeType=html&fmt=ahah

References

  1. Becking J.-H. 1984; GenusBeijerinckia . In Bergey’s Manual of Systematic Bacteriology 1:311–321 pp Krieg N. R. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Bonnet-Smits E.M., Robertson L.A., VanDijken J.P., Senior E., Kuenen J.G. 1988; Carbon dioxide fixation as the initial step in the metabolism of acetone byThiosphaera pantotropha . Journal of General Microbiology 134:2281–2289
    [Google Scholar]
  3. Bringmann G., Kühn R. 1977; Grenzwerte der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Grünalgen (Scenedesmus quadricauda) im Zellvermehrung- shemmtest. Zeitschrift für Wasser- und Abwasserfors- chung 10:87–98
    [Google Scholar]
  4. Bringmann G., Kühn R. 1978; Grenzwerte der Schadwirkung wassergefährdender Stoffe gegen Blaualgen (Microcystis aeruginosa) und Grünalgen (Scenedesmus quadricauda) im Zellvermehrung- shemmtest. Vom Wasser 50:45–60
    [Google Scholar]
  5. Coleman J.P., Perry J.J. 1984; Fate of the C1, product of propane dissimilation inMycobacterium vaccae . Journal of Bacteriology 160:1163–1164
    [Google Scholar]
  6. Davies R., Stephenson M. 1941; Studies on the acetone-butyl-alcohol fermentation. I.Nutritional and other factors involved in the preparation of active suspensions of Clostridium acetobutylicum (Weizmann). Biochemical Journal 35:1320–1331
    [Google Scholar]
  7. Fuchs G., Stupperich E., Eden G. 1980; Autotrophic CO2 fixation inChlorobium limicola.Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Archives of Microbiology 128:64–71
    [Google Scholar]
  8. Krieg N. R. 1984 Bergey’s Manual of Systematic Bacteriology 1: pp. 140–407 Baltimore :: Williams & Wilkins.;
    [Google Scholar]
  9. Landau B.R., Brunengraber H. 1987; The role of acetone in the conversion of carbohydrates. Trends in Biochemical Sciences 12:113–114
    [Google Scholar]
  10. Lange B., Vejdelek Z. J. 1980 PhotometrischeAnalyse. Weinheim :: Verlag Chemie.;
    [Google Scholar]
  11. Law J.H., Slepecky R.A. 1961; Assay of poly-β- hydroxybutyric acid. Journal of Bacteriology 82:33–36
    [Google Scholar]
  12. Levine S., Krampitz L.O. 1952; The oxidation of acetone by a soil diphteroid. Journal of Bacteriology 64:645–650
    [Google Scholar]
  13. Lukins H.B., Foster J.W. 1963; Methylketone metabolism in hydrocarbon utilizing mycobacteria. Journal of Bacteriology 85:1074–1087
    [Google Scholar]
  14. Mandel M., Igambi L., Bergendahl J., Dodson M.R. Jr Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. Journal of Bacteriology 101:330–338
    [Google Scholar]
  15. Mazé P. 1915; Ferment forménique. Fermentation formenique de Taceton. Procédé du culture simple du ferment forménique. Comptes Rendus de I’Académie des Sciences, Societé de Biologie 78:395–405
    [Google Scholar]
  16. Northrop J.H., Ashe L.H., Senior J.K. 1919; Biochemistry ofBacillus acetoethylicum with reference to the formation of acetone. Journal of Biological Chemistry 39:1–21
    [Google Scholar]
  17. Palleroni N.J. 1984; Family I. Pseudomonada- ceae. In Bergey’s Manual of Systemic Bacteriology 436: pp Krieg N. R. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  18. Pfennig N., Trüper H.G. 1981; Isolation of members of the families Chromatiaceae and Chloro- biaceae. In The Prokaryotes 1: pp 279–289 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Edited by Berlin: Springer-Verlag;
    [Google Scholar]
  19. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. Journal of Microbiological Methods 4:303–306
    [Google Scholar]
  20. Platen H., Schink B. 1987; Methanogenic degradation of acetone by an enrichment culture. Archives of Microbiology 149:136–141
    [Google Scholar]
  21. Plaut G.W.E., Lardy H. 1950; Incorporation of the carbons of acetone, formate and carbonate into acetoacetate. Journal of Biological Chemistry 186:705–715
    [Google Scholar]
  22. Procházková L. 1959; Bestimmung der Nitrate im Wasser. Zeitschrift für Analytische Chemie 167:254–260
    [Google Scholar]
  23. Robertson L.A., Kuenen J.G. 1983; Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. Journal of General Microbiology 129:2847–2855
    [Google Scholar]
  24. Roth L. 1988; Wassergefáhrdende Stoffe. Teil IV: Stoffinformationen, 7. Ergánzungslieferung, p. 3. Landsberg, FRG:: Ecomed Verlagsgesellschaft;
    [Google Scholar]
  25. Rudney H. 1954; Propanediol phosphate as a possible intermediate in the metabolism of acetone. Journal of Biological Chemistry 210:361–371
    [Google Scholar]
  26. Schardinger F. 1905; Bacillus macerans, ein Aceton-bildender Rottebacillus. Zentralblatt für Bakteriologie, Parasitenkunde. Infektionskrankheiten undHygiene, Abteilung II 14:772–781
    [Google Scholar]
  27. Senior P.J., Dawes E.A. 1973; The regulation of poly-β-hydroxybutyrate metabolism inAzotobacter beijerinkii . Biochemical Journal 134:225–238
    [Google Scholar]
  28. Siegel J.M. 1950; The metabolism of acetone by the photosynthetic bacteriumRhodopseudomonas gela-tinosa . Journal of Bacteriology 60:595–606
    [Google Scholar]
  29. Simon H., Floss H. 1967 Anwendung uon Isotopen in der organischen Chemie und Biochemie 1: pp. 23ff–50ff Berlin Heidelberg & New York:: Springer Verlag.;
    [Google Scholar]
  30. Stumm W., Morgan J.J. 1981 Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edn. New York:: Wiley.;
    [Google Scholar]
  31. Sussmuth R., Eberspächer J., Haag R., Springer W. 1987 Biochemisch-mikrobiologisches Praktikum. Stuttgart :: Thieme Verlag.;
    [Google Scholar]
  32. Taylor D.G., Trudgill P.W., Gripps R.E., Harris P.R. 1980; The microbial metabolism of acetone. Journal of General Microbiology 118:159–170
    [Google Scholar]
  33. Vestal J.R., Perry J.J. 1969; Divergent metabolic pathways for propane and propionate utilization by a soil isolate. Journal of Bacteriology 99:216–221
    [Google Scholar]
  34. Widdel F. 1986; Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Applied and Environmental Microbiology 51:1056–1062
    [Google Scholar]
  35. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of a new sulfate-reducer enriched with acetate from saline environments.Description ofDesulfobacter postgatei gen. nov. sp. nov. Archives of Microbiology 129:395–400
    [Google Scholar]
  36. Widdel F., Kohring G.W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Archives of Microbiology 134:286–294
    [Google Scholar]
  37. Widmark E.M.P. 1920; Studies in the acetone concentration in blood, urine, and alveolar air. II. The passage of acetone and aceto-acetic acid into the urine. Biochemical Journal 14:364–378
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-4-883
Loading
/content/journal/micro/10.1099/00221287-135-4-883
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error