1887

Abstract

The plasmid-encoded -lactamase genes of six strains of were cloned and shown to be expressed in . The cloned genes were re-introduced into S. aureus via a shuttle vector, and expressed -lactamase. However, clones containing only the small amount of DNA found necessary for expression of ampicillin resistance in E. coli did not express -lactamase in .. Much larger pieces of DNA from the original plasmid were necessary to obtain expression in .. Some of the six strains of . synthesized -lactamase constitutively and some released only a small proportion of the enzyme into the medium. Both these characteristics were maintained in the clones so it is concluded that they are features either of the gene itself or of the surrounding DNA. The cloned genes were sequenced and the putative amino acid sequences of the lactamases were compared. There are several differences between the sequences and in particular one change in the N-terminal region, at a position believed to be especially important for export of proteins from the cell, is thought to have a key effect on whether or not the enzyme is found in the medium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-4-1001
1989-04-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/4/mic-135-4-1001.html?itemId=/content/journal/micro/10.1099/00221287-135-4-1001&mimeType=html&fmt=ahah

References

  1. Ambler R. P. 1975; Amino-acid sequence of Staphylococcus aureus penicillinase. Biochemical Journal 151:197–218
    [Google Scholar]
  2. Ambler R. P. 1979; Amino acid sequences of β- lactamases. In Beta-Lactamases pp. 99–127 Hamilton-Miller J. M. T., Smith J. T. Edited by London: Academic Press;
    [Google Scholar]
  3. Ambler R. P. 1980; The structure of βlactamases. Philosophical Transactions of the Royal Society of London B289:321–331
    [Google Scholar]
  4. Asheshov E. H. 1966; Chromosomal location of the genetic elements controlling penicillinase production in a strain of Staphylococcus aureus . Nature; London: 210804–806
    [Google Scholar]
  5. Boeke J. D., Russel M., Model P. 1980; Processing of filamentous phage pre-coat protein (effect of sequence variations near the signal peptidase cleavage site). Journal of Molecular Biology 144:103–116
    [Google Scholar]
  6. Carter P., Bedouelle H., Waye M. M. Y., Winter G. 1985 Oligonucleotide Site-directed Mutugenesis in M13 Colchester: Anglian Biotechnology;
    [Google Scholar]
  7. Casadaban M. J., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli . Journal of Molecular Biology 138:179–207
    [Google Scholar]
  8. Chang A. C. Y., Cohen S. N. 1974; Genome construction between bacterial species in vitro:replication and expression of Staphylococcus plasmid genes in Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 71:1030–1034
    [Google Scholar]
  9. Chou P. Y., Fasman G. D. 1978a; Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology 47:45–148
    [Google Scholar]
  10. Chou P. Y., Fasman G. D. 1978b; Empirical predictions of protein conformation. Annual Review of Biochemistry 47:251–276
    [Google Scholar]
  11. Dyke K. G. H., Jevons P. M., Parker M. T. 1966; Penicillinase production and intrinsic resistance to penicillins in Staphylococcus aureus . Lancet i:835–838
    [Google Scholar]
  12. Dyke K. G. H., Richmond M. H. 1976; Occurrence of various types of penicillinase plasmids among hospital staphylococci. Journal of Clinical Pathology 20:75–79
    [Google Scholar]
  13. Dyke K. G. H., Parker M. T., Richmond M. H. 1970; Penicillinase production and metal-ion resistance in Staphylococcus aureus cultures isolated from hospital patients. Journal of Medical Microbiology 3:125–136
    [Google Scholar]
  14. Feavers I. M., Miles J. S., Moir A. 1985; The nucleotide sequence of a spore germination gene(gerA) of Bacillus subtilis . Gene 38:95–102
    [Google Scholar]
  15. Forbes B. A., Schaberg D. R. 1983; Transfer of resistance plasmids from Staphylococcus epidermidis to Staphylococcus aureus: evidence for conjugative exchange of resistance. Journal of Bacteriology 153:627–634
    [Google Scholar]
  16. Glass R. E. 1982 Gene Function: E. coli and its Heritable Elements pp. 60–64 London: CroomHelm;
    [Google Scholar]
  17. Herzberg O., Moult J. 1987; Bacterial resistance to β-lactam antibiotics: crystal structure ofβ-lactamase from Staphylococcus aureus PC1 at 2·5 Ǻ resolution. Science 236:694–701
    [Google Scholar]
  18. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide and streptogramin type B antibiotics. Journal of Bacteriology 150:804–814
    [Google Scholar]
  19. Johnston L. H., Dyke K. G. H. 1971; Stability of penicillinase plasmids in Staphylococcus aureus . Journal of Bacteriology 107:68–73
    [Google Scholar]
  20. Knott-Hunziker V., Waley S. G., Orlek B. S., Sammes P. G. 1979; Penicillinase active sites: labelling of serine-44 in βactamase I by 6(β-bromopenicillanic acid. FEBS Letters 99:59–61
    [Google Scholar]
  21. Korneluk R. G., Quan F., Gravel R. A. 1985; Rapid and reliable dideoxy sequencing of double-standed DNA. Gene 40:317–323
    [Google Scholar]
  22. Kreiswirth B. H., Löfdahl S., Betley M. J., O’Reilly M., Schleivert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin is not detectably transmitted by a prophage. Nature; London: 305709–712
    [Google Scholar]
  23. Lacey R. W. 1980; Bacteriophages and the spread of resistance in Staphylococcus aureus . Journal of Antimicrobial Chemotherapy 6:567–568
    [Google Scholar]
  24. Lacey R. W., Grinsted J. 1972; Linkage of fusidic acid resistance to the penicillinase plasmid in Staphylococcus aureus . Journal of General Microbiology 73:501–508
    [Google Scholar]
  25. Lindberg M. 1981; Genetic studies in Staphylococcal aureus using protoplasts: cell fusion and transformation. In Staphylococci and Staphylococcal Infections (Zentralblatt für Bakteriologie) suppl. 10 pp. 535–340 Jeljaszewicz J. Edited by Stuttgart: Gustav Fischer;
    [Google Scholar]
  26. Lyon B. R., Skurray R. 1987; Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiological Reviews 51:88–134
    [Google Scholar]
  27. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning : a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. McLaughlin J. R., Murray C. L., Rabinowitz J. C. 1981; Unique features in the ribosome binding site sequence of the Gram-positive Staphylococcus aureus β-lactamase gene. Journal of Biological Chemistry 256:11283–11291
    [Google Scholar]
  29. Messing J., Gronenborn B., Müller-Hill B., Hofschneider P. H. 1977; Filamentous coliphage Ml3 as a cloning vehicle: insertion of a HindIII fragment of the lac regulatory region into M13 replicative form in vitro . Proceedings of the National Academy of Sciences of the United States of America 74:3642–3646
    [Google Scholar]
  30. Mézes P. S. F., Wang W., Yeh E. C. H., Lampen J. O. 1983; Construction of penPΔl, Bacillus licheniformis 749/C β-lactamase lacking site for lipoprotein modification. Journal of Biological Chemistry 258:11211–11218
    [Google Scholar]
  31. Nielsen J. B. K., Lampen J. O. 1982; Membrane- bound penicillinases in Gram-positive bacteria. Journal of Biological Chemistry 257:4490–4495
    [Google Scholar]
  32. Novick R. P. 1963; Analysis by transduction of mutations affecting penicillinase formation in Staphylococcus aureus . Journal of General Microbiology 33:121–136
    [Google Scholar]
  33. Novick R. P., Bouanchaud D. 1971; Extrachromosomal nature of drug resistance in Staphylococcus aureus . Annals of the New York Academy of Sciences 182:279–294
    [Google Scholar]
  34. Novick R. P., Richmond M. R. 1965; Nature and interactions of the genetic elements governing penicillinase synthesis in Staphylococcus aureus . Journal of Bacteriology 90:467–480
    [Google Scholar]
  35. Novick R. P., Roth C. 1968; Plasmid-like resistance to inorganic salts in Staphylococcus aureus . Journal of Bacteriology 95:1335–1342
    [Google Scholar]
  36. Plückthun A., Knowles J. R. 1987; The consequences of stepwise deletions from the signalprocessing site of β-lactamase. Journal of Biological Chemistry 262:3951–3957
    [Google Scholar]
  37. Rosdahl V. T. 1973; Naturally occurring constitutive β-lactamase of novel serotype in Staphylococcus aureus . Journal of General Microbiology 77:229–231
    [Google Scholar]
  38. Richmond M. H. 1965a; Wild-type variants of exopenicillinase from Staphylococcus aureus . Biochemical Journal 94:584–593
    [Google Scholar]
  39. Richmond M. H. 1965b; Dominance of the inducible state in strains of Staphylococcus aureus containing two distinct penicillinase plasmids. Journal of Bacteriology 90:370–374
    [Google Scholar]
  40. Richmond M. H., Sykes R. B. 1973; The β- lactamase of Gram-negative bacteria and their possible physiological role. Advances in Microbial Physiology 9:31–88
    [Google Scholar]
  41. Russell M., Model P. 1981; A mutation downstream from the signal peptidase cleavage site affects cleavage but not membrane insertion of phage coat protein. Proceedings of the National Academy of Sciences of the United States of America 78:1717–1721
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  43. Shalita Z., Murphy E., Novick R. P. 1980; Penicillinase plasmids of Staphylococcus aureus:structural and evolutionary relationships. Plasmid 3:291–311
    [Google Scholar]
  44. Wang P. Z., Novick R. P. 1987; Nucleotide sequence and expression of the β-lactamase gene from Staphylococcus aureus plasmid pI258 in Escherichia coli, Bacillus subtilis and Staphylococcus aureus . Journal of Bacteriology 169:1763–1766
    [Google Scholar]
  45. Wilson C. R., Skinner S. E., Shaw W. V. 1981; Analysis of two chloramphenicol resistance plasmids from Staphylococcus aureus: insertional inactivation of chloramphenicol resistance, mapping of restriction sites and construction of cloning vehicles. Plasmid 5:245–258
    [Google Scholar]
  46. Yanisch-Perron C., Veira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
/content/journal/micro/10.1099/00221287-135-4-1001
Loading
/content/journal/micro/10.1099/00221287-135-4-1001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error