1887

Abstract

Previous investigations have shown that members of the genus possess a novel enzyme activity decarboxylating -2,4-diaminobutyric acid (DABA) to 1,3-diaminopropane (DAP). In this paper we describe the purification, by about 3600-fold, of the enzyme from . The purified enzyme was apparently homogeneous, and had a specific activity of 4200 nmol DAPmin (mg protein). The enzyme protein has an of 450000±20000 and is apparently comprised of four identical subunits ( 109000±1000). Neither 2,3-diaminopropionic acid, ornithine, lysine nor arginine served as substrates. Some properties of the enzyme were determined. Cultivation of this bacterium in the presence of added DABA brought about increased production of norspermidine (NSPD), characteristically present in this species as well as DAP, suggesting that the enzyme may be functionally implicated in the formation of DAP, a biosynthetic precursor of NSPD.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-2-345
1989-02-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/2/mic-135-2-345.html?itemId=/content/journal/micro/10.1099/00221287-135-2-345&mimeType=html&fmt=ahah

References

  1. Ackermann D., Menssine H. G. 1960; Niedrig-molekulare, N-haltige Inhaltsstoffe der Roten Wegschnecke, Arion emiricorum . Hoppe-Seyler’s Zeitschrift für physiologische Chemie 318:212–218
    [Google Scholar]
  2. Aleksijevic A., Grove J., Schuber F. 1979; Studies on polyamine biosynthesis in Euglena gracilis . Biochimica et biophysica acta 565:199–207
    [Google Scholar]
  3. Andrews P. 1965; The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochemical Journal 96:595–606
    [Google Scholar]
  4. Boeker E. A., Snell E. E. 1972; Amino acid decarboxylases. In The Enzymes 6 pp. 217–253 Boyer P. D. Edited by New York: Academic Press;
    [Google Scholar]
  5. Clark S. 1984; Determination of membrane protein concentration. In Receptor Biochemistry and Methodology 2 pp. 149–161 Venter J., Harrison L. C. Edited by New York: Alan R. Liss;
    [Google Scholar]
  6. Davis B. J. 1964; Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences 121:404–427
    [Google Scholar]
  7. De Rosa M., De Rosa S., Gambacorta A., Carteni-Farina M., Zappia V. 1978; The biosynthetic pathway of new polyamines in Caldariella acidophila . Biochemical Journal 176:1–7
    [Google Scholar]
  8. Höltta E., Jänne J., Pispa J. 1972; Ornithine decarboxylase from Escherichia coli: stimulation of the enzyme activity by nucleotides. Biochemical and Biophysical Research Communications 47:1165–1171
    [Google Scholar]
  9. Ito M., Aida K., Uemura T. 1969; Studies on the bacterial formation of a peptide antibiotic, colistin. II. On the biosynthetic pathway of α,γ-diaminobutyric acid and relationship between colistin formation and amino acids metabolism in Bacillus colistinus KOYAMA. Agricultural and Biological Chemistry 33:949–958
    [Google Scholar]
  10. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  11. Morgan D. M. L. 1980; Polyamine oxidases. In Polyamines in Biochemical Research pp. 285–302 Gaugas J. M. Edited by New York: John Wiley;
    [Google Scholar]
  12. Morris D. R., Fillingame R. H. 1974; Regulation of amino acid decarboxylase. Annual Review of Biochemistry 43:303–325
    [Google Scholar]
  13. Nakajima T., Wolfgram F., Clark W. G. 1967; Identification of 1,4-methylhistamine, 1,3-diamino- propane and 2,4-diaminobutyric acid in bovine brain. Journal of Neurochemistry 14:1113–1118
    [Google Scholar]
  14. Nigam S. N., Ressler C. 1966; Biosynthesis of 2,4-diaminobutyric acid from L-[3H]homoserine and DL-[l-14C]aspartic acid in Lathyrus sylvestris W. Biochemistry 5:3426–3431
    [Google Scholar]
  15. Paulin L., Pösö H. 1983; Ornithine decarboxylase activity from an extremely thermophilic bacterium, Clostridium thermohydrosulfuricus: effect of GTP analogues on enzyme activity. Biochimica et biophysica acta 724:197–205
    [Google Scholar]
  16. Paulin L., Ruohole H., Nykänen I., Pösö H. 1983; The incorporation of 1,3-diaminopropane into thermine by an extreme thermophile: a novel route for the biosynthesis of polyamines. FEMS Microbiology Letters 19:299–302
    [Google Scholar]
  17. Paulus H., Gray E. 1964; The biosynthesis of polymyxin B by growing cultures of Bacillus polymyxa . Journal of Biological Chemistry 239:865–871
    [Google Scholar]
  18. Pegg A. E., Williams-Ashman H. G. 1981; Biosynthesis of putrescine. In Polyamines in Biology and Medicine pp. 3–42 Morris D. R., Marton L. J. Edited by New York: Marcel Dekker;
    [Google Scholar]
  19. Perkins H. R., Cummins C. S. 1964; Ornithine and 2,4-diaminobutyric acid as components of the cell walls of plant pathogenic Corynebacteria . Nature; London: 202:1105–1107
    [Google Scholar]
  20. Rao D. R., Hariharan K., Vijayalakshmi K. R. 1969; A study of the metabolism of L-α,γ-diaminobutyric acid in a Xanthomonas species. Biochemical Journal 114:107–115
    [Google Scholar]
  21. Smith T. A. 1985; The di- and poly-amine oxidases of higher plants. Biochemical Society Transactions 113:319–322
    [Google Scholar]
  22. Tabor C. W., Tabor H. 1985; Polyamines in microorganisms. Microbiological Reviews 49:81–99
    [Google Scholar]
  23. Tyagi A. K., Tabor C. W., Tabor H. 1983; Ornithine decarboxylase (Saccharomyces cerevisiae). Methods in Enzymology 94:135–139
    [Google Scholar]
  24. Wu W. H., Morris D. R. 1973; Biosynthetic arginine decarboxylase from Escherichia coli: purification and properties. Journal of Biological Chemistry 248:1687–1695
    [Google Scholar]
  25. Yamamoto S., Itano H., Kataoka H., Makita M. 1982; Gas-liquid chromatographic method for analysis of di- and polyamines in foods. Journal of Agricultural and Food Chemistry 30:435–439
    [Google Scholar]
  26. Yamamoto S., Shinoda S., Kawaguchi M., Waka-Matsu K., Makita M. 1983; Polyamine distribution in Vibrionaceae: norspermidine as a general constituent of Vibrio species. Canadian Journal of Microbiology 29:724–728
    [Google Scholar]
  27. Yamamoto S., Hamanaka K., Suemoto Y., Ono B., Shinoda S. 1986a; Evidence for the presence of a novel biosynthetic pathway for norspermidine in Vibrio . Canadian Journal of Microbiology 32:99–103
    [Google Scholar]
  28. Yamamoto S., Suemoto Y., Seito Y., Nakao H., Shinoda S. 1986b; The presence of L-2,4-diamino-butyric acid decarboxylase activity in Vibrio species: a new biosynthetic pathway for 1,3-diaminopropane. FEMS Microbiology Letters 35:289–293
    [Google Scholar]
  29. Yamamoto S., Yoshida M., Nakao H., Koyama M., Hashimoto Y., Shinoda S. 1986C; Variations in cellular polyamine compositions and contents of Vibrio species during growth in media with various NaCl concentrations. Chemical and Pharmaceutical Bulletin 34:3038–3042
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-2-345
Loading
/content/journal/micro/10.1099/00221287-135-2-345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error