1887

Abstract

is a halophilic phototrophic bacterium that has been isolated from soda lakes containing high concentrations of sulphate, chloride and carbonates. It utilizes reduced sulphur compounds as photosynthetic electron donors and oxidizes them to sulphate, but can also grow photoheterotrophically with sulphate as sole sulphur source. The requirements for, and the cytoplasmic concentrations of, sulphate and chloride have been determined. High concentrations of sulphate are neither required for nor inhibit growth. Although chloride is by far the dominant anion of the environment, growth of occurs in the absence of added chloride. Sodium chloride can be replaced by sodium sulphate and sodium carbonate. Chloride is excluded from the cytoplasm with decreasing ratios of cytoplasmic/external chloride at increasing external chloride concentrations (under iso-osmotic conditions).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-2-237
1989-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/2/mic-135-2-237.html?itemId=/content/journal/micro/10.1099/00221287-135-2-237&mimeType=html&fmt=ahah

References

  1. Bakker E.P., Rottenberg H., Caplan S.R. 1976; An estimation of the light-induced electrochemical potential difference of protons across the membranes of Halobacterium halobium . Biochimica et biophysica acta 440:557–572
    [Google Scholar]
  2. Bartlett P.D., Scoog D.A. 1954; Colorimetric determination of elemental sulfur in hydrocarbons. Analytical Chemistry 26:1008–1011
    [Google Scholar]
  3. Christian J.H.B., Waltho J.A. 1962; Solute concentrations within cells of halophilic and nonhalophilic bacteria. Biochimica et biophysica acta 65:506–508
    [Google Scholar]
  4. Cohen S., Oren A., Shilo M. 1983; The divalent cation requirement of Dead Sea halobacteria. Archives of Microbiology 136:184–190
    [Google Scholar]
  5. Coleman G. 1974; Nature of the major inorganic ions concentrated during growth of Bacillus amyloliquefaciens . Journal of General Microbiology 84:297–302
    [Google Scholar]
  6. Dodgson K.S. 1961; Determination of inorganic sulfate in studies on the enzymatic and nonenzymatic hydrolysis of carbohydrate and other sulfate esters. Biochemical Journal 78:312–319
    [Google Scholar]
  7. Drews G. 1981; Rhodospirillum salexigens spec, nov., an obligatory halophilic phototrophic bacterium. Archives of Microbiology 130:325–327
    [Google Scholar]
  8. Galinski E.A., Pfeiffer H.-P., Trüper H.G. 1985; 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidine-carboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira . European Journal of Biochemistry 149:135–139
    [Google Scholar]
  9. Ginzburg M., Sachs L., Ginzburg B.Z. 1970; Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. Journal of General Physiology 55:187–207
    [Google Scholar]
  10. Imhoff J.F. 1986; Osmoregulation and compatible solutes in eubacteria. FEMS Microbiology Reviews 39:57–66
    [Google Scholar]
  11. Imhoff J.F. 1988a; Halophilic phototrophic bacteria. In Halophilic Bacteria pp. 85–108 Edited by Rodriguez-Valera F. Boca Raton: CRC Press;
    [Google Scholar]
  12. Imhoff J.F. 1988b; Anoxygenic phototrophic bacteria. In Methods in Aquatic Bacteriology pp. 207–240 Edited by Austin B. Chichester: John Wiley;
    [Google Scholar]
  13. Imhoff J.F., Trüper H.G. 1977; Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochloro- phyllb . Archives of Microbiology 114:115–121
    [Google Scholar]
  14. Imhoff J.F., Sahl H.G., Soliman G.S.H., Trüper H.G. 1979; The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology Journal 1:219–234
    [Google Scholar]
  15. Imhoff J.F., Tindall B.J., Grant W.D., Trüper H.G. 1981; Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Archives of Microbiology 130:238–242
    [Google Scholar]
  16. Kennedy E.P. 1982; Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 79:1092–1095
    [Google Scholar]
  17. Masui M., Wada S. 1973; Intracellular concentrations of Na+, K+, and Cl of a moderately halophilic bacterium. Canadian Journal of Microbiology 19:1181–1186
    [Google Scholar]
  18. Matheson A.T., Sprott G.D., Mcdonald I.J., Tessier H. 1976; Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology. Canadian Journal of Microbiology 22:780–786
    [Google Scholar]
  19. Michel H., Oesterhelt D. 1980; Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N´-dicyclohexyl- carbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate and phosphate concentration, arid influence of the potassium gradient. Biochemistry 19:4607–1614
    [Google Scholar]
  20. Mullakhanbhai M.F., Larsen H. 1975; Halobacterium volcanii spec, nov., a Dead Sea halobac- terium with a moderate salt requirement. Archives of Microbiology 104:207–214
    [Google Scholar]
  21. Nissen H., Dundas I.D. 1984; Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Archives of Microbiology 138:251–256
    [Google Scholar]
  22. Novozamsky I., Vaneck R. 1977; Total sulfur determination in plant material. Zeitschrift für Analytische Chemie 286:367–368
    [Google Scholar]
  23. Oren A. 1986; Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius . Canadian Journal of Microbiology 32:4–9
    [Google Scholar]
  24. Pachmayr F. 1960 Vorkommen und Bestimmung von Schwefelverbindungenin Mineralwasser. Dissertation, University of Miinchen, FRG.
    [Google Scholar]
  25. Rodriguez-Valera F., Ventosa A., Juez G., Imhoff J.F. 1985; Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microbial Ecology 11:107–115
    [Google Scholar]
  26. Rottenberg H. 1979; The measurement of membrane potential and pH in cells, organelles and vesicles. Methods in Enzymology 55:547–569
    [Google Scholar]
  27. Shindler D.B., Wydro R.M., Kushner D.J. 1977; Cell-bound cations of the moderately halophilic bacterium Vibrio costicola . Journal of Bacteriology 130:698–703
    [Google Scholar]
  28. Soliman G.S.H., Truper H.G. 1982; Halo- bacterium pharaonis sp. nov., a new extremely halo- alkaliphilica rchaebacterium with low magnesium requirement. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene(Abteilung I, Originate) C3:318–329
    [Google Scholar]
  29. Stock J.B., Rauch B., Roseman S. 1977; Periplasmic space in Salmonella typhimurium and Escherichia coli . Journal of Biological Chemistry 252:7850–7861
    [Google Scholar]
  30. Takacs F.P., Matula T.I., Macleod R.A. 1964; Nutrition and metabolism of marine bacteria. XIII. Intracellular concentrations of sodium and potassium ions in a marine pseudomonad. Journal of Bacteriology 87:510–518
    [Google Scholar]
  31. Tokuda H., Unemoto T. 1982; Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus . Journal of Biological Chemistry 257:10007–10014
    [Google Scholar]
  32. Trüper H.G. 1968; EctothiorhodospiramobilisPelsh, a phototrophic bacterium depositing sulfur outside the cells. Journal of Bacteriology 95:1910–1920
    [Google Scholar]
  33. Unemoto T., Tsuruoka T., Hayashi M. 1973; Role of Na+ and K+ in preventing lysis of slightly halophilicVibrio alginolyticus . Canadian Journal of Microbiology 19:563–571
    [Google Scholar]
  34. Urban P.J. 1961; Colorimetry of sulfur anions. I. An improved colorimetric method for the determination of thiosulfate. Analytical Chemistry 179:415–422
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-2-237
Loading
/content/journal/micro/10.1099/00221287-135-2-237
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error