1887

Abstract

Competition studies in continuous culture between a Hup mutant of and its presumed isogenic Hup recombinant showed that Hup activity benefited the organism under N-fixing, sucrose- or phosphate-limiting conditions but was ineffective or disadvantageous under O-, sulphate- or iron-limitation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-2-221
1989-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/2/mic-135-2-221.html?itemId=/content/journal/micro/10.1099/00221287-135-2-221&mimeType=html&fmt=ahah

References

  1. Ackrell B.A.C., Erickson S.K., Jones C.W. 1972; The respiratory chain NADPH dehydrogenase of Azotobacter vinelandii . European Journal of Biochemistry 26:387–392
    [Google Scholar]
  2. Aguilar O.M., Yates M.G., Postgate J.R. 1985; The beneficial effects of hydrogenase in Azotobacter chroococcum under nitrogen-fixing carbon-limiting conditions in continuous and batch cultures. Journal of General Microbiology 131:3141–3145
    [Google Scholar]
  3. Dalton H., Postgate J.R. 1969; Effect of oxygen on growth of Azotobacter chroococcum in continuous culture. Journal of General Microbiology 54:463–473
    [Google Scholar]
  4. Dilworth M.J., Glenn A. 1984; How does a legume nodule work?. Trends in Biochemical Sciences 9:519–523
    [Google Scholar]
  5. Dixon R.O.D. 1972; Hydrogenase in legume root nodule bacteroids: occurrence and properties. Archiv für Mikrobiologie 85:193–201
    [Google Scholar]
  6. Drevon J.J., Salzac L. 1984; Is hydrogenase activity beneficial for nitrogen fixation by soybean root nodules?. In Advances in Nitrogen Fixation Research p. 499 Veeger C., Newton W. E. Edited by The Hague: Nijhoff/Junk;
    [Google Scholar]
  7. Evans H.J., Hanus F.J., Russell S.A., Harker A.R., Lambert G.R., Dalton D.A. 1985; Biochemical characterization, evolution and genetics of H2 recycling in Rhizobium. In Nitrogen Fixation and CO2 Metabolism pp 3–11 Ludden P. W., Burris J. E. Edited by New York: Elsevier;
    [Google Scholar]
  8. Evans H.J., Zuber M., Dalton D.A. 1987; Some processes related to nitrogen fixation in nodulated legumes. Philosophical Transactions of the Royal Society 317:143–160
    [Google Scholar]
  9. Figurski D., Helinski D. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proceedings of the National Academy of Sciences of the United States of America 76:1648–1652
    [Google Scholar]
  10. Hoagland R.A., Hanus F.J., Cantrell M.A., Evans H.J. 1983; Rapid colony screening method for identifying hydrogenase activity in Rhizobium japonicum . Applied and Environmental Microbiology 45:892–897
    [Google Scholar]
  11. Laane C., Haaker H., Veeger C. 1979; On the efficiency of oxidative phosphorylation in membrane vesicles of Azotobacter vinelandii and of Rhizobium leguminosarum bacteroids. European Journal of Biochemistry 97:369–377
    [Google Scholar]
  12. Lees H., Postgate J.R. 1973; The behaviour of Azotobacter chroococcum in oxygen- and phosphate- limited culture. Journal of General Microbiology 75:161–166
    [Google Scholar]
  13. Partridge C.D.P., Yates M.G. 1982; Effect of chelating agents on hydrogenase in Azotobacter, chroococcum . Biochemical Journal 204:339–344
    [Google Scholar]
  14. Pedrosa F.O., Stephan M., Dobereiner J., Yates M.G. 1982; Hydrogen uptake hydrogenase activity in nitrogen-fixing Azospirillum brasilense . Journal of General Microbiology 119:313–319
    [Google Scholar]
  15. Postgate J.R., Partridge C.D.P., Robson R.L., Simpson F.B., Yates M.G. 1982; A method for screening for hydrogenase-negative mutants of Azo- tobacter chroococcum . Journal of General Microbiology 128:505–508
    [Google Scholar]
  16. Robson R.L., Chesshyre J., Wheeler K., Jones R., Woodley P., Postgate J.R. 1984; Genome size and complexity in Azotobacter chroococcum . Journal of General Microbiology 130:1603–1612
    [Google Scholar]
  17. Sayavedra-Soto L., Powell G., Evans H.J., Morris R. 1988; Nucleotide sequences of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. In Proceedings of the 7th International Congress on Nitrogen Fixation p. 589 Bothe H., De Bruin F. J., Newton W. E. Edited by Stuttgart: Gustav Fisher;
    [Google Scholar]
  18. Sorenson G.M., Windaele R. 1986; Effect of transfer of symbiont plasmid and of hydrogenase genes (hup) on the symbiont efficiency of Rhizobium leguminosarum strains. Journal of General Microbiology 132:317–324
    [Google Scholar]
  19. Tibelius K.H., Robson R.L., Yates M.G. 1987; Cloning and characterisation of hydrogenase genes from Azotobacter chroococcum . Molecular and General Genetics 206:285–290
    [Google Scholar]
  20. Walker C.C., Partridge C.D.P., Yates M.G. 1981; The effect of nutrient limitation on hydrogen production by nitrogenase in continuous cultures of Azotobacter chroococcum . Journal of General Microbiology 124:317–327
    [Google Scholar]
  21. Yates M.G., Robson R.L. 1985; Mutants of Azotobacter chroococcum defective in hydrogenase activity. Journal of General Microbiology 131:1459–1466
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-2-221
Loading
/content/journal/micro/10.1099/00221287-135-2-221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error