1887

Abstract

The pili expressed by all isolates of react with two monoclonal antibodies, SM1 and SM2. In contrast, although many isolates of also express pili (class I) which react with antibodies SM1 and SM2, a proportion express pili (class II) which fail to react. In order to define the epitopes recognized by these antibodies, a series of overlapping peptides corresponding to the amino acid sequence of conserved regions of gonococcal pili have been synthesized. The minimum epitope recognized by antibody SM1 was found to comprise a linear peptide EYYLN, corresponding to residues 49–53 of mature pilin. In contrast, antibody SM2 reacted with a number of peptides from around the cysteine residue (Cys 1) at position 120, suggesting that an extended region may contribute to a conformational epitope recognized by this antibody in the native protein. The identification of the two epitopes defines structural differences between the classes of pili expessed by meningococci. In order to determine the distribution of pilin gene sequences in we used as hybridization probes an oligonucleotide (PS1) with the sequence 5′-GAGTATTACCTGAATCA-3' which spans the coding region for the SM1 epitope, and a fragment of the 3′ end of the gonococcal gene which contains conserved sequences flanking the two Cys codons and encodes the SM2 epitope. All strains of and tested, regardless of piliation phenotype, harboured DNA sequences homologous to those encoding the carboxy-terminus of meningococcal class I pilin. Furthermore, all gonococci and all meningocococci producing class I pili hybridized with oligonucleotide probe PS1. Non-reverting non-piliated derivatives of previously class I pilus-producing strains showed reduced hybridization signals with this probe, but nevertheless retained sequences homologous to the coding sequence for the SM1 epitope. However, meningococci producing class II pili could be divided into two groups on the basis of their reaction with the PS1 probe: half the strains tested failed to react, which is consistent with our previous analysis of silent class I pilin sequences; the remainder reacted (relatively weakly) with the probe, suggesting that the silent sequences in these strains extend further towards the 5′ end of the pilin gene than in strains studied previously. Some strains of reacted weakly with both types of probe but failed to produce SM1-reactive pili. In contrast,

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-12-3239
1989-12-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/12/mic-135-12-3239.html?itemId=/content/journal/micro/10.1099/00221287-135-12-3239&mimeType=html&fmt=ahah

References

  1. Achtman M., Crowe B. A., Olyhoek A., Stritt-Matter W., Morelli G. 1988; Recent results on epidemic meningococcal meningitis.. Journal of Medical Microbiology 26:161–187
    [Google Scholar]
  2. Aho E. L., Cannon J. G. 1988; Characterization of a silent pilin gene locus from Neisseria meningitidis strain FAM18.. Microbial Pathogenesis 5:391–398
    [Google Scholar]
  3. Aho E. L., Murphy G. L., Cannon J. G. 1987; Distribution of specific DNA sequences among pathogenic and commensal Neisseria species.. Infection and Immunity 55:1009–1013
    [Google Scholar]
  4. Bergstrom S., Robbins K., Koomey M. K., Swanson J. 1986; Piliation control mechanisms in Neisseria gonorrhoeae.. Proceedings of the National Academy of Sciences of the United States of America 83:3890–3894
    [Google Scholar]
  5. Black W. J., Cannon J. G. 1985; Cloning of the gene for the common pathogenic Neisseria H.8 antigen from Neisseria gonorrhoeae.. Infection and Immunity 47:322–325
    [Google Scholar]
  6. Brown N. M., Ragge N. K., Speller D.C.E. 1987; Septicaemia due to Neisseria lactamica - initial confusion with Neisseria meningitidis.. Journal of Infection 15:243–245
    [Google Scholar]
  7. Cannon J. G., Black W. J., Nachamkin I., Stewart P. 1984; Monoclonal antibody that recognises an outer membrane antigen common to the pathogenic Neisseria species but not to most nonpathogenic Neisseria species.. Infection and Immunity 43:994–999
    [Google Scholar]
  8. Diaz J.-L., Virji M., Heckels J. E. 1984; Structural and antigenic differences between two types of meningococcal pili.. FEMS Microbiology Letters 21:181–184
    [Google Scholar]
  9. Elleman T. C., Hoyne P. A., Stewart D. J., Mckern N. M., Peterson J. E. 1986; Nucleotide sequence of the gene encoding the two-subunit pilin of Bacteroides nodosus.. Journal of Bacteriology 167:243–250
    [Google Scholar]
  10. Feinberg A. P., Vogenstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.. Analytical Biochemistry 132:6–13
    [Google Scholar]
  11. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. 1987; Strategies for epitope analysis using peptide synthesis.. Journal of Immunological Methods 103:259–274
    [Google Scholar]
  12. Gill P., Jeffreys A. J., Werret D. J. 1985; Forensic application of DNA ‘fingerprints’.. Nature; London: 318577–579
    [Google Scholar]
  13. Greenblatt J. J., Floyd K., Philipps M. E., Frasch C. E. 1988; Morphological differences in Neisseria meningitidis pili.. Infection and Immunity 56:2356–2362
    [Google Scholar]
  14. Haas R., Meyer T. F. 1986; The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion.. Cell 44:107–115
    [Google Scholar]
  15. Haas R., Schwartz H., Meyer T. F. 1987; Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae.. Proceedings of the National Academy of Sciences of the United States of America 84:9079–9083
    [Google Scholar]
  16. Hagblom P., Segal E., Billyard E., So M. 1985; Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae.. Nature; London: 315156–158
    [Google Scholar]
  17. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids.. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  18. Heckels J. E. 1989; Structure and function of pili of pathogenic Neisseria species.. Clinical Microbiology Reviews 2:S66–S73
    [Google Scholar]
  19. Heckels J. E., Virji M. 1986; Antigenic variation of gonococcal surface proteins: effect on virulence.. In Protein-Carbohydrate Interactions in Biological Systems pp. 89–94 Lark D. L. Edited by London: Academic Press;
    [Google Scholar]
  20. Hermodsen M. A., Chen C. S., Buchanan T. M. 1978; Neisseria pili proteins: amino-terminal sequences and identification of an unusual amino acid.. Biochemistry 17:442–445
    [Google Scholar]
  21. Hitchcock P. J. 1989; Unified nomenclature for pathogenic Neisseria species.. Clinical Microbiology Reviews 2:564–565
    [Google Scholar]
  22. Johnson A. P. 1983; The pathogenic potential of commensal species of Neisseria.. Journal of Clinical Pathology 36:213–223
    [Google Scholar]
  23. Kellog D. S., Peacock W. L., Deacon W. E., Brown L., Pirkle C. I. 1963; Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation.. Journal of Bacteriology 85:1274–1279
    [Google Scholar]
  24. Kristiansen B. E., Sorensen B., Simonsen T., Spanne O., Lund V., Bjorvatn B. 1984; Isolates of Neisseria meningitidis from different sites in the same patients: phenotypic and genomic studies with special reference to adherence, piliation and DNA restriction.. Journal of Infectious Diseases 150:389–396
    [Google Scholar]
  25. Lambden P. R., Heckels J. E., Mcbride H., Watt P. J. 1981; The identification and isolation of novel pilus types produced by variants of Neisseria gonorrhoeae following selection in vivo.. FEMS Microbiology Letters 10:339–341
    [Google Scholar]
  26. Marrs C. F., Schoolnik G., Koomey J. M., Hardy J., Rothbard J., Falkow S. 1985; Cloning and sequencing of a Moraxella bovis pilin gene.. Journal of Bacteriology 163:132–139
    [Google Scholar]
  27. Meyer T. F., Mlawer N., So M. 1982; Pilus expression in N. gonorrhoeaeinvolves chromosomal rearrangement.. Cell 30:45–52
    [Google Scholar]
  28. Nicolson I. J., Perry A.C.F., Heckels J. E., Saunders J. R. 1987a; Genetic analysis of variant pilin genes from Neisseria gonorrhoeae P9 cloned in Escherichia coli: physical and immunological properties of encoded pilins.. Journal of General Microbiology 133:553–561
    [Google Scholar]
  29. Nicolson I. J., Perry A.C.F., Virji M., Heckels J. E., Saunders J. R. 1987b; Localization of antibody-binding sites by sequence analysis of cloned pilin genes from Neisseria gonorrhoeae.. Journal of General Microbiology 133:825–833
    [Google Scholar]
  30. Olafson R. W., Mccarthy P. J., Bhatti A. R., Dooley J.S.G., Heckels J. E., Trust T. J. 1985; Structural and antigenic analysis of meningococcal piliation.. Infection and Immunity 48:336–342
    [Google Scholar]
  31. O’Reilly M., De Azavedo J.C.S., Kennedy S., Foster T. J. 1986; Inactivation of the alpha- haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and studies on the expression of its haemolysins.. Microbial Pathogenesis 1:125–138
    [Google Scholar]
  32. Pasloske B. L., Joffe M., Sun Q., Volpel K., Paranchych W., Eftekhar F., Speert D. P. 1988; Serial isolates of Pseudomonas aeruginosa from a cystic fibrosis patient have identical pilin sequences.. Infection and Immunity 56:665–672
    [Google Scholar]
  33. Perry A.C.F., Hart C. A., Nicolson I. J., Heckels J. E., Saunders J. R. 1987a; Interstrain homology of pilin gene sequences in Neisseria meningitidis isolates that possess markedly different antigenic pilus types.. Journal of General Microbiology 133:1409–1418
    [Google Scholar]
  34. Perry A.C.F., Nicolson I. J., Saunders J. R. 1987b; Structural analysis of the pilE region of Neisseria gonorrhoeae P9.. Gene 60:85–92
    [Google Scholar]
  35. Perry A.C.F., Nicolson I. J., Saunders J. R. 1988; Neisseria meningitidis strain Cl 14 contains silent, truncated pilin genes that are homologous to Neisseria gonorrhoeae pil sequences.. Journal of Bacteriology 170:1691–1697
    [Google Scholar]
  36. Potts W. J., Saunders J. R. 1988; Nucleotide sequence of the structural gene for class I pilin from Neisseria meningitidis: homologies with the pilE locus of Neisseria gonorrhoeae.. Molecular Microbiology 2:647–653
    [Google Scholar]
  37. Saastry P. A., Pearlstone L. B., Smillie L. B., Paranchych W. 1983; Amino acid sequence of pilin isolated from Pseudomonas aeruginosa PAK.. FEBS Letters 151:253–256
    [Google Scholar]
  38. Schoolnik G. K., Fernandez R., Tai J. Y., Rothbard J., Gotschlich E. C. 1984; Gonococcal pili: primary structure and receptor binding domain.. Journal of Experimental Medicine 159:1351–1370
    [Google Scholar]
  39. Segal E., Billyard E., So M., Storzbach S., Meyer T. F. 1985; Role of chromosomal rearrangement in N. gonorrhoeaepilus phase variation.. Cell 40:293–300
    [Google Scholar]
  40. Segal E., Hagblom P., Seifert H. S., So M. 1986; Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments.. Proceedings of the National Academy of Sciences of the United States of America 83:2177–2181
    [Google Scholar]
  41. Seifert H. S., Aijioka R. S., Marchal C., Sparling P. F., So M. 1988; DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae.. Nature; London: 336392–395
    [Google Scholar]
  42. Stephens D. S., Mcgee Z. A. 1981; Attachment of Neisseria meningitidisto human mucosal surfaces: influence of pili and type of receptor cell.. Journal of Infectious Disease 143:525–532
    [Google Scholar]
  43. Stephens D. S., Whitney A. M., Rothbard J., Schoolnik G. K. 1985; Pili of Neisseria meningitidis. Analysis of structure and investigation of structural and antigenic relationships to gonococcal pili.. Journal of Experimental Medicine 161:1539–1553
    [Google Scholar]
  44. Stern A., Meyer T. F. 1987; Common mechanism controlling phase and antigenic variation in pathogenic neisseriae.. Molecular Microbiology 1:5–12
    [Google Scholar]
  45. Sullivan K. M., Saunders J. R. 1989; Nucleotide sequence and genetic organization of the WgoPII restriction-modification system of Neisseria gonorrhoeae.. Molecular and General Genetics 216:380–387
    [Google Scholar]
  46. Swanson J. 1973; Studies on gonococcal infection. IV. Pili: their role in attachment of gonococci to tissue culture cells.. Journal of Experimental Medicine 137:571–589
    [Google Scholar]
  47. Swanson J., Kraus S. J., Gotschlich E. C. 1971; Studies on gonococcus infection. I. Pili and zones of adhesion: their relation to gonococcal growth patterns.. Journal of Experimental Medicine 134:886–906
    [Google Scholar]
  48. Swanson J., Bergstrom S., Robbins K., Barrera O., Corwin D., Koomey J. M. 1986; Gene conversion involving the pilin structural gene correlates with pilus+ to pilus changes in Neisseria gonorrhoeae.. Cell 47:267–276
    [Google Scholar]
  49. Swanson J., Robbins K., Barrera O., Corwin D., Boslego J., Ciak J., Blake M., Koomey M. J. 1987; Gonococcal pilin variants in experimental gonorrhoea.. Journal of Experimental Medicine 165:1344–1357
    [Google Scholar]
  50. Tinsley C. R., Heckels J. E. 1986; Variation in the expression of pili and outer membrane protein by Neisseria meningitidisduring the course of meningococcal infection.. Journal of General Microbiology 132:106–113
    [Google Scholar]
  51. Trust T. J., Gillespie R. M., Bhatti A. R., White L. A. 1983; Differences in the adhesive properties of Neisseria meningitidis from human buccal epithelial cells and erythrocytes.. Infection and Immunity 41:106–113
    [Google Scholar]
  52. Virji M., Heckels J. E. 1983; Antigenic crossreactivity of Neisseria pili: investigations with type- and species-specific monoclonal antibodies.. Journal of General Microbiology 129:2761–2768
    [Google Scholar]
  53. Virji M., Heckels J. E. 1985; Role of anti-pilus antibodies in host defense against gonococcal infection studied with monoclonal antibodies.. Infection and Immunity 49:621–628
    [Google Scholar]
  54. Virji M., Heckels J. E. 1989; Location of a blocking epitope on outer membrane protein III of Neisseria gonorrhoeae by synthetic peptide analysis.. Journal of General Microbiology 135:1895–1899
    [Google Scholar]
  55. Virji M., Everson J. S., Lambden P. R. 1982; Effect of anti-pilus antisera on virulence of variants of Neisseria gonorrhoeae for cultured epithelial cells.. Journal of General Microbiology 128:1095–1100
    [Google Scholar]
  56. Virji M., Heckels J. E., Watt P. J. 1983; Monoclonal antibodies to goonococcal pili: studies on antigenic determinants on pili from variants of strain P9.. Journal of General Microbiology 129:1965–1973
    [Google Scholar]
  57. Ward M. E., Watt P. J., Robertson J. N. 1974; The human fallopian tube: a model for gonococcal infection.. Journal of Infectious Diseases 129:650–659
    [Google Scholar]
  58. Zak K., Diaz J-L., Jackson D., Heckels J. E. 1984; Antigenic variation during infection with Neisseria gonorrhoeae: detection of antibodies to surface proteins in sera of patients with gonorrhoea.. Journal of Infectious Diseases 149:166–173
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-12-3239
Loading
/content/journal/micro/10.1099/00221287-135-12-3239
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error