Cloning and Genetic Analysis of Six Pyrroloquinoline Quinone Biosynthesis Genes in DSM 760 Free

Abstract

After EMS mutagenesis, mutants of DSM 760 unable to synthesize pyrroloquinoline quinone (PQQ) were selected among mutants which did not utilize methanol but were still able to use methylamine as growth substrate. Six different genes () were identified by complementation analysis. The , cloned in a single R′ plasmid, were grouped in a 3·9 kb DNA fragment. The genes and belonged to a single transcription unit independent from the adjacent gene . The gene was contained in a short DNA segment of approximately 0·1 kb, separated from by a region with no apparent role in PQQ biosynthesis. Two other genes were identified:, which was closely linked to ; and , located approximately 19 kb from the other genes. Directed mutagenesis by marker exchange provided chromosomal insertion mutations of these genes in . Attempts to express the genes in two heterologous hosts, and , were unsuccessful, and no plasmid containing all of the genes was isolated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-11-2917
1989-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/11/mic-135-11-2917.html?itemId=/content/journal/micro/10.1099/00221287-135-11-2917&mimeType=html&fmt=ahah

References

  1. Allen L. N., Hanson R. S. 1985; Construction of broad host range cloning vectors:identification of genes necessary for growth of Methylobacterium organophilum on methanol. Journal of Bacteriology 161:955–962
    [Google Scholar]
  2. Ameyama M., Nonobe M., Shinagawa E., Matsushita K., Takimoto K., Adachi O. 1986; Purification and characterization of the quinoprotein d-glucose dehydrogenase apoenzyme in Escherichia coli. Agricultural and Biochemical Chemistry 50:49–57
    [Google Scholar]
  3. Anthony C. 1986; Bacterial oxidation of methane and methanol. Advances in Microbial Physiology 27:113–209
    [Google Scholar]
  4. Biville F., Mazodier P., Gasser F., vanKleef M.A.G., Duine J. A. 1988; Physiological properties of a PQQ mutant of Methylobacterium organophilum. FEMS Microbiology Letters 52:53–58
    [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  6. Chang A.C.Y., Cohen S. N. 1978; Construction and characterisation of amplifiable multicopy DNA cloning vehicles derived from the PI5A cryptic miniplasmid. Journal of Bacteriology 134:1141–1156
    [Google Scholar]
  7. Ditta G., Stanfield S., Corbin D., Helinski D. 1980; Broad host range DNA cloning system for gram-negative bacteria:construction of a gene bank in Rhizobium meliloti. Proceedings of the National Academy of Sciences of the United States of America 77:7347–7351
    [Google Scholar]
  8. Duine J. A., Frank J., VanZeeland J. K. 1979; Glucose dehydrogenase from Acinetobacter calcoaceticus :a quinoprotein. FEBS Letters 108:443–446
    [Google Scholar]
  9. Duine J. A., Frank J., Jongejan J. A. 1987; Enzymology of quinoproteins. Advances in Enzymology 59:69–212
    [Google Scholar]
  10. Fox C. F., Wilson G. 1968; The role of a phosphoenolpyruvate dependent kinase system in beta-glucoside catabolism in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 59:988–995
    [Google Scholar]
  11. Goosen N., Vermaas D.A.M., VandePutte P. 1987; Cloning of the genes involved in synthesis of coenzyme pyrroloquinoline quinone from Acinetobacter calcoaceticus. Journal of Bacteriology 169:303–307
    [Google Scholar]
  12. Goosen N., Horsman M.P.A., Huinen R.G.M., VandePutte P. 1989; Acinetobacter calcoaceticusgenes involved in biosynthesis of the coenzyme pyrroloquinoline quinone:nucleotide sequence and expression in Escherichia coli K12. Journal of Bacteriology 171:447–455
    [Google Scholar]
  13. Groen B. W., VanKleef M.A.G., Duine J. A. 1986; Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochemical Journal 234:611–615
    [Google Scholar]
  14. Hommes R.W.J., Postma P.W.NEIJSSEL, Tempest D. W., Dokter P., Duine J. A. 1984; Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli. FEMS Microbiology tetters 24:329–333
    [Google Scholar]
  15. Houck D. R., Hanners J. L., Unkefer C. J. 1988; Biosynthesis of pyrroloquinoline quinone.1. Identification of biosynthetic precursors using 13C labelling and NMR spectroscopy. Journal of the American Chemical Society 110:6920–6921
    [Google Scholar]
  16. Humphrey G. O., Willshaw G. A., Anderson E. S. 1975; A simple method for the preparation of large quantities of pure plasmid DNA. Biochimica et biophysica acta 383:457–463
    [Google Scholar]
  17. Kleckner N., Roth J., Botstein D. 1977; Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. Journal of Molecular Biology 116:125–139
    [Google Scholar]
  18. Machlin S. M., Tam P. E., Bastien C. A., Hanson R. S. 1988; Genetic and physical analysis of Methylobacterium organophilum XX genes encoding methanol oxidation. Journal of Bacteriology 170:141–148
    [Google Scholar]
  19. Maclennan D. G., Ousby J. C., Vasey R. B., Cotton N. T. 1971; The influence of dissolved oxygen in Pseudomonas AM1 grown on methanol in continuous culture. Journal of General Microbiology 69:395–404
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning:a laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  21. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  22. Mazodier P., Biville F., Turlin E., Gasser F. 1988; Localization of a pyrroloquinoline quinone biosynthesis gene near the methanol dehydrogenase structural gene in Methylobacterium organophilumDSM 760. Journal of General Microbiology 134:2513–2524
    [Google Scholar]
  23. Miller J. H. 1972 Experiments in Molecular Genetics, p. 433. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Nunn D. N., Lidstrom M. E. 1986a; Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of Methylobacterium sp. strain AM1. Journal of Bacteriology 166:581–590
    [Google Scholar]
  25. Nunn D. N., Lidstrom M. E. 1986b; Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1. Journal of Bacteriology 166:591–597
    [Google Scholar]
  26. Priefer U. B., Simon R., Puhler A. 1985; Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions. Journal of Bacteriology 163:324–330
    [Google Scholar]
  27. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  28. VanKleef M.A.G., Duine J. A. 1988; l-Tyrosine is the precursor of PQQ biosynthesis in Hyphomicrobium X. FEBS letters 237:91–97
    [Google Scholar]
  29. VanderMeer A., Duine J. A. 1986; Covalently bound pyrroloquinoline quinone is the organic prosthetic group in human placental lysyl oxidase. Biochemical Journal 239:789–791
    [Google Scholar]
  30. VanSchie B. J., deMooy O. H., Linton D. J., VanDijken J. P., Kuenen J. G. 1987; PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. Journal of General Microbiology 133:867–875
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-11-2917
Loading
/content/journal/micro/10.1099/00221287-135-11-2917
Loading

Data & Media loading...

Most cited Most Cited RSS feed