1887

Abstract

Summary: The filamentous fungus excreted significant amounts of 1,3--glucanase, 1,6--glucanase and --glucosidase activities when the culture medium was depleted of carbon sources. During starvation small amounts of intracellular 1,3-- and 1,6--glucanase and -glucosidase activities were also detected. Very low levels of -glucanase activity remained bound to mycelium and some activity was found loosely attached to the cells and/or to water-soluble 1,3--1,6--glucan adhering to the cell walls. During active growth intracellular 1,3--glucanase and mycelium-bound 1,3-- and 1,6--glucanase activities were detected in small or trace amounts. During hyphal growth very low levels of 1,3-- and 1,6--glucanase activities were also found to be weakly associated with the cells and/or with water-soluble -glucan covering the hyphae. Cycloheximide inhibited the increase in intra- and extracellular 1,3-- and 1,6--glucanase and -glucosidase activities. This indicated that protein synthesis was involved in the intra- and extracellular appearance of these three enzyme activities in derepressed cells. The formation of the extracellular 1,3--glucanase, 1,6--glucanase and -glucosidase activities was regulated by catabolite repression. 1,3-- and 1,6--glucanase activities were uncompetitively inhibited and -glucosidase activity noncompetitively inhibited by glucose and glucono-δ-lactone. Optimum pH and temperature values as well as thermal stabilities of the three extracellular enzyme activities were determined. Almost all of the -glucosidase activity but only one-third of the extracellular 1,3-- and 1,6--glucanase activities were found to bind to Con A-Sepharose. Under conditions of carbon limitation almost 90% of the extracellular 1,3--/1,6--glucan excreted during fungal growth was degraded by the extracellular -glucanases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-11-2847
1989-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/11/mic-135-11-2847.html?itemId=/content/journal/micro/10.1099/00221287-135-11-2847&mimeType=html&fmt=ahah

References

  1. Bartnicki-García S. 1973; Fundamental aspects of hyphal morphogenesis. Symposia of the Society for General Microbiology 23:245–267
    [Google Scholar]
  2. Bartnicki-García S., Lippman E. 1972; The bursting tendency of hyphal tips of fungi: presumptive evidence for a delicate balance between cell wall synthesis and wall lysis in apical growth. Journal of General Microbiology 73:487–500
    [Google Scholar]
  3. Bluhm T. L., Deslandes Y., Marchessault R. H., Pérez S., Rinaudo M. 1982; Solid-state and solution conformation of scleroglucan. Carbohydrate Research 100:117–130
    [Google Scholar]
  4. Bruner R. L. 1964; Determination of reducing value. 3,5-Dinitrosalicylic acid method. Methods in Carbohydrate Chemistry 4:67–71
    [Google Scholar]
  5. Catley B. J. 1983; Regulation of yeast and fungal polysaccharides excluding chitin and cellulose. Progress in Industrial Microbiology 18:129–200
    [Google Scholar]
  6. Cenamor R., Molina M., Galdona J., Sanchez M., Nombela C. 1987; Production and secretion of Saccharomyces cerevisiae β-glucanases: differences between protoplast and periplasmic enzymes. Journal of General Microbiology 133:619–628
    [Google Scholar]
  7. Chesters C.G.C., Bull A. T. 1963; The enzymic degradation of laminarin. 1. The distribution of laminarinase among microorganisms. Biochemical Journal 86:28–31
    [Google Scholar]
  8. Christias C., Lockwood J. L. 1973; Conservation of mycelial constituents in four sclerotium-forming fungi in nutrient-deprived conditions. Phytopathology 63:602–605
    [Google Scholar]
  9. Davis E. N., Rhodes R. A., Russell Shulke H. 1965; Fermentative production of exocellular glucans by fleshy fungi. Applied Microbiology 13:267–271
    [Google Scholar]
  10. Del Rey F., García-Acha I., Nombela C. A. 1979; The regulation of jS-glucanase synthesis in fungi and yeast. Journal of General Microbiology 110:83–89
    [Google Scholar]
  11. Dickerson A. G., Mantle P. G., Szczyrbak C. A. 1970; Autolysis of extracellular glucans produced in vitro by a strain of Claviceps fusiformis.. Journal of General Microbiology 60:403–415
    [Google Scholar]
  12. Fèvre M. 1979; Glucanases, glucan synthases and wall growth in Saprolegnia monoica.. In Fungal Walls and Hyphal Growth pp. 225–263 Burnett J. H., Trinci A. P. J. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Fleet G. H., Phaff H. J. 1974; Glucanases in Schizosaccharomyces. Isolation and properties of the cell wall-associated β(l→3)-glucanases. Journal of Biological Chemistry 249:1717–1728
    [Google Scholar]
  14. Friebe B., Holldorf A. W. 1975; Control of extracellular β-l,3-glucanase activity in a basidio- mycete species. Journal of Bacteriology 122:818–825
    [Google Scholar]
  15. Goldstein I. J., Hay G. W., Lewis B. A., Smith F. 1965; Controlled degradation of polysaccharides by periodate oxidation, reduction and hydrolysis. Methods in Carbohydrate Chemistry 5:361–369
    [Google Scholar]
  16. Hadar Y., Pines M., Chet I., Henis Y. 1983; The regulation of sclerotium initiation in Sclerotium rolfsii by glucose and cyclic AMP. Canadian Journal of Microbiology 29:21–26
    [Google Scholar]
  17. Halleck F. E. 1967; Polysaccharides and methods for production thereof. US Patent 3301848
    [Google Scholar]
  18. Johnson J.Jr Kirkwood S., Misaki A., Nelson T. E., Scaletti J. V., Smith F. 1963; Structure of a new glucan. Chemistry and Industry820–822
    [Google Scholar]
  19. Johnston M. 1987; A model fungal gene regulatory mechanism: the gal genes of Saccharomyces cerevisiae.. Microbiological Reviews 51:458–476
    [Google Scholar]
  20. Kamada T., Hamada Y., Takemaru T. 1982; Autolysis in vitro of the stipe cell wall in Coprinus macrorhizus.. Journal of General Microbiology 128:1041–1046
    [Google Scholar]
  21. Kamada T., Fujii T., Nakagawa T., Takemaru T. 1985; Changes in (l→3)-β-glucanase activities during stipe elongation in Coprinus cinereus.. Current Microbiology 12:257–260
    [Google Scholar]
  22. Kikumoto S., Miyajima T., Yoshizumi S., Fujimoto S., Kimura K. 1970; Polysaccharide produced by Schizophyllum commune. I. Formation and some properties of an extracellular polysaccharide. Nippon Nogei Kagaku Kaishi 44:337–342
    [Google Scholar]
  23. Kikumoto S., Miyajima T., Kimura K., Okubo S., Komatsu N. 1971; Polysaccharide produced by Schizophyllum commune. II. Chemical structure of an extracellular polysaccharide. Nippon Nogei Kagaku Kaishi 45:162–168
    [Google Scholar]
  24. Kottutz E. 1989 Untersuchungen zur in vivo- und in vitro-β-Glucan-Synthese bei Sclerotium glucanicum CBS 52071 PhD thesis Technische Universitat Braunschweig, FRG;
    [Google Scholar]
  25. Meyer R., Parish R. W., Hohl H. R. 1976; Hyphal tip growth in Phytophthora. Gradient distribution and ultra-histochemistry of enzymes. Archives of Microbiology 110:215–224
    [Google Scholar]
  26. Miller G. L., Blum R., Glennon W. E., Burton A. L. 1960; Measurement of carboxymethyl- cellulase activity. Analytical Biochemistry 2:127–132
    [Google Scholar]
  27. Molina M., Cenamor R., Nombela C. 1987; Exo-l,3-β-glucanase activity in Candida albicans: effect of the yeast-to-mycelium transition. Journal of General Microbiology 133:609–617
    [Google Scholar]
  28. Münzer S. 1989 Produktion und Charakterisierung eines von Schizophyllum commune A TCC 38548 gebildeten extrazellulären β-1-3-Glucans. PhD thesis Technische Universitat Braunschweig, FRG;
    [Google Scholar]
  29. Nachtwey S. 1989 Bildung und partielle Charakterisierung eines extrazellularen Polysaccharids von Monilinia fructicola PhD thesis Technische Universitat Braunschweig, FRG;
    [Google Scholar]
  30. Niederpruem D. J., Marshall C., Speth J. L. 1977; Control of extracellular slime accumulation in monokaryons and resultant dikaryons of Schizophyllum commune.. Sabouraudia 15:283–295
    [Google Scholar]
  31. Phaff H. J. 1979; A retrospective and current view on endogenous β-glucanases in yeast. In Advances in Protoplast Research (Proceedings of the 5th International Protoplast Symposium) pp. 171–182 Budapest: Hungarian Academy of Sciences;
    [Google Scholar]
  32. Rapp P., Beck C. H., Wagner F. 1979; Formation of exopolysaccharides by Rhodococcus erythropolis and partial characterization of a heteropolysaccharide of high molecular weight. European Journal of Applied Microbiology and Biotechnology 7:67–78
    [Google Scholar]
  33. Reese E. T. 1977; Degradation of polymeric carbohydrates by microbial enzymes. Recent Advances in Phytochemistry 11:311–367
    [Google Scholar]
  34. Reese E. T., Mandels M. 1959; β,3-Glucanases in fungi. Canadian Journal of Microbiology 5:173–185
    [Google Scholar]
  35. Reese E. T., Mandels M. 1966; β-Glucanases other than cellulase. Methods in Enzymology 8:607–615
    [Google Scholar]
  36. Reese E. T., Parrish F. W., Ettlinger M. 1971; Nojirimycin and d-glucono-1,5-lactone as inhibitors of carbohydrases. Carbohydrate Research 18:381–388
    [Google Scholar]
  37. Reese E. T., Parrish F. W., Mandels M. 1962; β ,6-Glucanases in fungi. Canadian Journal of Microbiology 8:327–334
    [Google Scholar]
  38. Rinaudo M., Vincendon M. 1982; 13CNMR structural investigation of scleroglucan. Carbohydrate Polymers 2:135–144
    [Google Scholar]
  39. Santos T., Villanueva J. R., Nombela C. 1977; Production and catabolite repression of Penicillium italicum β-glucanases. Journal of Bacteriology 129:52–58
    [Google Scholar]
  40. Santos T., Villanueva J. R., Nombela C. 1978; Regulation of β,3-glucanase synthesis in Penicillium italicum.. Journal of Bacteriology 133:542–548
    [Google Scholar]
  41. Santos T., Sänchez M., Villanueva J. R., Nombela C. 1979; Derepression of β-l,3- glucanases in Penicillium italicum: localization of the various enzymes and correlation with cell wall glucan mobilization and autolysis. Journal of Bacteriology 137:6–12
    [Google Scholar]
  42. Sietsma J. H., Sonnenberg A.M.S., Wessels J.G.H. 1985; Localization by autoradiography of synthesis of (l→3)-β and (l→6)-β linkages in a wall glucan during hyphal growth of Schizophyllum commune.. Journal of General Microbiology 131:1331–1337
    [Google Scholar]
  43. Singh P. P., Whistler R. L., Tokuzen R., Nakahara W. 1974; Scleroglucan, an antitumor polysaccharide from Sclerotium glucanicum.. Carbohydrate Research 37:245–247
    [Google Scholar]
  44. Stephan D. 1987 Bildung von β-l-3-Glucanen aus Mono-, Di- und Polysacchariden mit Sclerotium rolfsii und deren physikochemische Charakterisierung PhD thesis Technische Universitat Braunschweig, FRG;
    [Google Scholar]
  45. Stoppok W., Rapp P., Wagner F. 1982; Formation, localization and regulation of endo- 1,4-β-glucanases and β-glucosidases from Cellulo- monas uda.. Applied and Environmental Microbiology 44:44–53
    [Google Scholar]
  46. Villa T. G., Notario V., Villanueva J. R. 1978; Direct chemical proof of different glycosyl- ation patterns for yeast exo- and endo-1,3-β- glucanases. Journal of General Microbiology 109:371–374
    [Google Scholar]
  47. Wessels J.G.H. 1966; Control of cell-wall glucan degradation during development in Schizophyllum commune.. Antonie van Leeuwenhoek 32:341–355
    [Google Scholar]
  48. Wessels J.G.H., Sietsma J. H. 1979; Wall structure and growth in Schizophyllum commune.. In Fungal Walls and Hyphal Growth pp. 27–48 Burnett J. H., Trinci A. P. J. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  49. Yanaki T., Kojima T., Norisuye T. 1981; Triple helix of scleroglucan in dilute aqueous sodium hydroxide. Polymer Journal 13:1135–1143
    [Google Scholar]
  50. Yoshizumi H., Ashikari T. 1987; Expression, glycosylation and secretion of fungal hydrolases in yeast. Trends in Biotechnology 5:277–281
    [Google Scholar]
  51. Zonneveld B.J.M. 1972; Morphogenesis in Aspergillus nidulans. The significance of α-l,3-glucan of the cell wall and α-l,3-glucanase for cleisto- thecium development. Biochimica et biophysica acta 273:174–187
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-11-2847
Loading
/content/journal/micro/10.1099/00221287-135-11-2847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error