1887

Abstract

PS5, a double-stranded DNA bacteriophage of JM604 that adsorbs specifically to the outer-membrane protein NosA, was isolated from stagnant irrigation ditch water. Mutant strains that do not produce NosA are resistant to PS5 and cannot grow anaerobically with NO as the sole electron acceptor. PS5 did not adsorb to mutants and adsorption to the wild-type strain was reduced when cells were grown with a high concentration of copper, a condition that represses the synthesis of NosA. The isolation of spontaneous PS5-resistant mutants yielded strains that were clearly defective in growth on NO at about a 10% incidence. About half of these strains could respire NO when supplied with a high concentration of exogenous copper.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-10-2569
1989-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/10/mic-135-10-2569.html?itemId=/content/journal/micro/10.1099/00221287-135-10-2569&mimeType=html&fmt=ahah

References

  1. Adams M.H. 1959 Bacteriophages. New York, London & Sydney: Interscience;
    [Google Scholar]
  2. Bradley D.E. 1966; The fluorescent staining of bacteriophage nucleic acids. Journal of General Microbiology 44:383–391
    [Google Scholar]
  3. Bradley D.E. 1967; Ultrastructure of bacteriophages and bacteriocins. Bacteriological Reviews 31:230–314
    [Google Scholar]
  4. Carlson C.A., Pierson L.S., Rosen J.J., Ingraham J.L. 1983; Pseudomonas stutzeri and related species undergo natural transformation. Journal of Bacteriology 153:93–99
    [Google Scholar]
  5. Coyle C.L., Zumft W.G., Kroneck P.M.H., Korner H., Jakob W. 1985; Nitrous oxide reductase from denitrifying Pseudomonas perfecto-marina. Purification and properties of a novel multicopper enzyme. European Journal of Biochemistry 153:459–467
    [Google Scholar]
  6. Datta D.B., Arden B., Henning U. 1977; Major proteins of the Escherichia coli outer cell envelope membrane as bacteriophage receptors. Journal of Bacteriology 131:821–829
    [Google Scholar]
  7. Döhler K., Huss V.A.R., Zumft W.G. 1987; Transfer of Pseudomonas perfectomarina Baumann, Bowditch, Baumann, and Beaman 1983, to Pseudomonas stutzeri (Lehmann and Neumann 1896) Sijderius 1946. International Journal of Systematic Bacteriology 37:1–3
    [Google Scholar]
  8. Eisenstark A. 1967; Bacteriophage techniques. Methods in Virology 1:449–524
    [Google Scholar]
  9. Gliesche C.G., Holm N.C., Beese M., Neumann M., Vdlker H., Gebers R., Hirsch P. 1988; New bacteriophages active on strains of Hypho-microbium . Journal of General Microbiology 134:1339–1353
    [Google Scholar]
  10. Hill W.F. JR Akin E.W., Metcalf T.G. 1972; Virus in water. II. Evaluation of membrane cartridge filters for recovering low multiplicities of poliovirus from water. Applied Microbiology 23:880–888
    [Google Scholar]
  11. Kelln R.A., Warren R.A.J. 1971; Isolation and properties of a bacteriophage lytic for a wide range of pseudomonads. Canadian Journal of Microbiology 17:677–682
    [Google Scholar]
  12. Lee H.S., Hancock R.E.W., Ingraham J.L. 1989; Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper-containing N2O reductase. Journal of Bacteriology 171:2096–2100
    [Google Scholar]
  13. Liss A., Ackermann H.-W., Mayer L.W., Zierdt C.H. 1981; Tailed phages of Pseudomonas and related bacteria. Intervirology 15:71–81
    [Google Scholar]
  14. Matsubara T., Frunzke K., Zumft W.G. 1982; Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus . Journal of Bacteriology 149:816–823
    [Google Scholar]
  15. Mokhele K., Tang Y.J., Clark M.A., Ingraham J.L. 1987; A Pseudomonas stutzeri outer membrane protein inserts copper into N2O reductase. Journal of Bacteriology 169:5721–5726
    [Google Scholar]
  16. Nurminen M., Lounatmaa K., Sarvas M., Makela P.H., Nakae T. 1976; Bacteriophage-resistant mutants of Salmonella typhimurium deficient in two major outer membrane proteins. Journal of Bacteriology 127:941–955
    [Google Scholar]
  17. Palleroni N.J., Doudoroff M., Stanier R.Y., Solanes R.E., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. Journal of General Microbiology 60:215–231
    [Google Scholar]
  18. Palleroni N.J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas . International Journal of Systematic Bacteriology 23:333–339
    [Google Scholar]
  19. Primrose S.B., Day M. 1977; Rapid concentration of bacteriophages from aquatic habitats. Journal of Applied Bacteriology 42:417–421
    [Google Scholar]
  20. Rao N.U., Labzoffsky N.A. 1969; A simple method for the detection of low concentration of viruses in large volumes of water by the membrane filter technique. Canadian Journal of Microbiology 15:399–403
    [Google Scholar]
  21. Riester J., Zumft W.G., Kroneck P.M.H. 1989; Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic charac-terization of different forms of the multicopper enzyme. European Journal of Biochemistry 178:751–762
    [Google Scholar]
  22. Sutton M.D. 1966; Bacteriophages of Pseudomonas atrofaciens in cereal seeds. Phytopathology 56:727–730
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-10-2569
Loading
/content/journal/micro/10.1099/00221287-135-10-2569
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error