1887

Abstract

A strain of Y sp., SMP1, isolated from a soil sample collected in the Monterotondo area (Rome), secreted isoamylase activity into the culture medium. The enzyme was purified and optimal reaction and stability conditions were determined by varying pH and temperature. The chemico-physical properties of the enzyme were similar to those of the isoamylase purified in Japan more than 20 years ago from ‘’ strain SB15. A genomic library of SMP1 was prepared in using pUC12 as vector. Two isoamylase-producing colonies were identified out of 6300 screened. The hybrid plasmids isolated from the two clones showed common restriction patterns. The chromosomal portion of one of these plasmids (pSM257) was completely sequenced. Comparison between the deduced amino acid sequence of the isoamylase and the published sequences of other amylolytic enzymes showed the presence of conserved domains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-1-37
1989-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/1/mic-135-1-37.html?itemId=/content/journal/micro/10.1099/00221287-135-1-37&mimeType=html&fmt=ahah

References

  1. Abdullah M., Catley B.J., Lee E.Y.C., Robyt J., Wallenfels K., Whelan W.J. 1966; The mechanism of carbohydrase action. II. Pullulanase,an enzyme specific for the hydrolysis of alpha-1,6-bonds in amylous oligosaccharides. Cereal Chemistry 43:111–118
    [Google Scholar]
  2. Amemura A., Konoshi Y., Harada T. 1980; Molecular weight of the undegraded polypeptide chain of Pseudomonas amyloderamosa isoamylase. Biochimica et biophysica acta 611:390–393
    [Google Scholar]
  3. Chapon C., Raibaud O. 1985; Structure of two divergent promoters located in front of the gene encoding pullulanase in Klebsiella pneumoniae and positively regulated by the malT product. Journal of Bacteriology 164:639–645
    [Google Scholar]
  4. D’Enfert C., Ryter A., Pugsley A.P. 1987; Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO Journal 6:3531–3538
    [Google Scholar]
  5. Dubnau D., Davidoff Abelson R. 1971; Fate of transforming DNA following uptake by competent Bacillus subtilis . Journal of Molecular Biology 56:209–221
    [Google Scholar]
  6. Gunja Z.H., Manners D.J., Maung K. 1961; Studies on carbohydrate metabolizing enzymes. VII. Yeast isoamylase. Journal of Biochemistry 81:392–398
    [Google Scholar]
  7. Harada T., Yokobayashi K., Misaki A. 1968; Formation of isoamylase by Pseudomonas . Applied Microbiology 16:1439–1444
    [Google Scholar]
  8. Harada T., Misaki A., Akai H., Yokobayashi K., Sugimoto K. 1972; Characterization of Pseudomonas isoamylase by its actions on amylopectin and glycogen: comparison with Aerobacter aerogenes . Biochimica et biophysica acta 268:497–505
    [Google Scholar]
  9. Hawley D.K., Mcclure W.R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Research 11:2237–2255
    [Google Scholar]
  10. Hobson P. N., Whelan W. J., Peat S. 1951; The enzymic synthesis and degradation of starch. Part XIV. R-Enzyme. Journal of the Chemical Society1451–1459
    [Google Scholar]
  11. Hoshiko S., Makabe O., Katsumata K., Satoh E., Nagaoka K. 1987; Molecular cloning and characterization of the Streptomyces hygroscopicus α-amylase gene. Journal of Bacteriology 169:1029–1036
    [Google Scholar]
  12. Ihara H., Sasaki T., Tsuboi A., Yamagata H., Tsukagoshi N., Udaka S. 1985; Complete nucleotide sequence of a thermophilic α-amylase gene: homology between prokaryotic and eukaryotic α-amylases at the active site. Journal of Biochemistry 98:95–103
    [Google Scholar]
  13. Inouye S., Asai Y., Nakazawa A., Nakazawa T. 1986; Nucleotide sequence of a DNA segment promoting transcription in Pseudomonas putida . Journal of Bacteriology 166:739–745
    [Google Scholar]
  14. Johnson K., Parker M.L., Lory S. 1986; Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. Journal of Biological Chemistry 261:15703–15708
    [Google Scholar]
  15. Kato K., Konoshi Y., Amemura A., Harada T. 1977; Affinity chromatography of Pseudomonas isoamylase on cross-linked amylose gel. Agricultural and Biological Chemistry 41:2077–2080
    [Google Scholar]
  16. Katsuragi N., Takizawa N., Murooka Y. 1987; Entire nucleotide sequence of the pullulanase gene of Klebsiella aerogenes W70. Journal of Bacteriology 169:2301–2306
    [Google Scholar]
  17. Koshland D., Botstein D. 1980; Secretion of betα-lactamase requires the carboxy end of the protein. Cell 20:749–760
    [Google Scholar]
  18. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  19. Lee E.Y.C., Whelan W.J. 1971; Glycogen and starch debranching enzymes. In The Enzymes 5 pp 192–234 Boyer P. Edited by New York: Academic Press;
    [Google Scholar]
  20. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning. A laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Maruo B., Kobayashi T. 1951; Enzymic scission of the branch links in amylopectin. Nature, London 167:606–607
    [Google Scholar]
  22. Matsuura Y., Kusonoki M., Harada W., Kakudo M. 1984; Structure and possible catalytic residues of Takα-amylase A. Journal of Biochemistry 95:697–702
    [Google Scholar]
  23. Messing J. 1983; New Ml3 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  24. Michaelis S., Chapon C., D’Enfert C., Pugsley A.P., Schwartz M. 1985; Characterization and expression of the structural gene for pullulanase, a maltose-inducible secreted protein of Klebsiella pneumoniae . Journal of Bacteriology 164:633–638
    [Google Scholar]
  25. Nakamura Y., Ogawa M., Nishide T., Emi M., Kosaki G., Himeno S., Matsubara K. 1984; Sequences of cDNAs for human salivary and pancreatic α-amylases. Gene 28:263–270
    [Google Scholar]
  26. Peschke U., Beuck V., Bujard H., Gentz R., Legrice S. 1985; Efficient utilization of Escherichia coli transcription signals in Bacillus subtilis . Journal of Molecular Biology 186:547–555
    [Google Scholar]
  27. Rodriguez R.L., Tait R.C. 1983 Recombinant DNA Techniques: an Introduction Addison Wesley
    [Google Scholar]
  28. Rogers J.C. 1985; Conserved amino acid sequence domains in alphα-amylases from plants, mammals and bacteria. Biochemical and Biophysical Research Communications 128:470–476
    [Google Scholar]
  29. Strauss E.C., Kobori J.A., Siu G., Hood L.E. 1986; Specific-primer-directed DNA sequencing. Analytical Biochemistry 154:353–360
    [Google Scholar]
  30. Sugimoto T., Amemura A., Harada T. 1974; Formation of extracellular isoamylase and intracellular alphα-glucosidase and amylase by Pseudomonas SB 15 and a mutant strain. Applied Microbiology 28:336–339
    [Google Scholar]
  31. Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41
    [Google Scholar]
  32. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proceedings of the National Academy of Sciences of the United States of America 76:4350–4354
    [Google Scholar]
  33. Von Heijne G. 1985; Signal sequences. The limits of variation. Journal of Molecular Biology 184:99–105
    [Google Scholar]
  34. Yokobayashi K., Misaki A., Harada T. 1970; Purification and properties of Pseudomonas isoamylase. Biochimica et biophysica acta 212:458–469
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-1-37
Loading
/content/journal/micro/10.1099/00221287-135-1-37
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error