1887

Abstract

To determine genetic relationships within and between two pathovars of , strains typical of pv. and selected strains of pv. were characterized by three methods. DNA-DNA hybridization experiments showed that strains of and were, respectively, 86-100% and 37–47% homologous to DNA from a reference strain when tested under stringent conditions. An analysis of electrophoretic variation in enzymes encoded by 26 loci placed 17 strains studied in a group of four electrophoretic types, and these strains had a mean genetic diversity per locus of 0·076. Six strains formed a second group of six electrophoretic types, which had a higher mean genetic diversity per locus of 0·479. The mean genetic distance separating from ( = 0·94) was unexpectedly large for strains of a single species. An analysis of restriction fragment length polymorphisms (RFLPs) with three cloned hybridization probes demonstrated that each of the and strains was unique. A method was developed to quantify the RFLP difference between pairs of strains, and cluster analysis revealed relationships among , but not among , that were similar to those based on enzyme polymorphisms. Implications of these findings for bacterial systematics and epidemiology are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-7-1949
1988-07-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/7/mic-134-7-1949.html?itemId=/content/journal/micro/10.1099/00221287-134-7-1949&mimeType=html&fmt=ahah

References

  1. Bonn W. G., Gitaitis R. D., Macneill B. H. 1985; Epiphytic survival of Pseudomonas syringae pv. tomato on tomato transplants shipped from Georgia. Plant Disease 69:58–60
    [Google Scholar]
  2. Brenner D. J. 1981; Introduction to the family Enterobacteriaceae. In The Prokaryotes II pp 1105–1127 Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G. Edited by Berlin: Springer-Verlag;
    [Google Scholar]
  3. Denny T. P. 1988; Phenotypic diversity in Pseudomonas syringae pv. tomato . Journal of General Microbiology 134:1939–1948
    [Google Scholar]
  4. Glynn P., Higgins P., Squartini A., O’Gara F. 1985; Strain differentiation in Rhizobium trifolii using DNA restriction analysis, plasmid DNA profiles and intrinsic antibiotic resistances. FEMS Microbiology Letters 30:177–182
    [Google Scholar]
  5. Hartung J. S., Civerolo E. L. 1987; Genomic fingerprints of Xanthomonas campestris pv. citri strains from Asia, South America and Florida. Phytopathology 77:282–285
    [Google Scholar]
  6. Hildebrand D. C., Schroth M. N., Huisman O. C. 1982; The DNA homology matrix and nonrandom variation concepts as the basis for the taxonomic treatment of plant pathogenic and other bacteria. Annual Review of Phytopathology 20:235–256
    [Google Scholar]
  7. Johnson J. L. 1984; Nucleic acids in bacterial classification. In Bergey’s Manual of Systematic Bacteriology 1 pp 8–11 Krieg N. R. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Lawson E. C., Jonsson C. B., Hemming B. C. 1986; Genotypic diversity of fluorescent pseudomonads as revealed by southern hybridization analysis with siderophore-related gene probes. In Iron, Siderophores, and Plant Diseases, pp 315–329 Swinburne T. R. Edited by New York: Plenum Press;
    [Google Scholar]
  9. Lazo G. R., Roffey R., Gabriel D. W. 1987; Pathovars of Xanthomonas campestris are distinguishable by restriction fragment-length polymorphism. International Journal of Systematic Bacteriology 37:214–221
    [Google Scholar]
  10. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Mccarter S. M., Jones J. B., Gitaitis R. D., Smitley D. R. 1983; Survival of Pseudomonas synngue pv. lomuio in asMJCiauuu wiui luaiaiu sccu, soil, host tissue, and epiphytic weed hosts in Georgia. Phytopathology 73:1393–1398
    [Google Scholar]
  12. Nei M. 1987 Molecular Evolutionary Biology New York: Columbia University Press;
    [Google Scholar]
  13. Nei M., Li W.-H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76:5269–5273
    [Google Scholar]
  14. Palleroni N. J. 1984; Family I. Pseudomonadaceae. In Bergey’s Manual of Systematic Bacteriology 14 pp 141–219 Krieg N. R. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. Journal of Bacteriology 110:1–11
    [Google Scholar]
  16. Pecknold P. C., Grogan R. G. 1973; Deoxyribonucleic acid homology groups among phytopathogenic Pseudomonas species. International Journal of Systematic Bacteriology 23:111–121
    [Google Scholar]
  17. Roth D. A., Johnson J. 1985; Cloned DNA fragments as hybridization probes to identify Xanthomonas campestris pv. phaseoli . Phytopathology 75:1321
    [Google Scholar]
  18. Schleifer K. H., Stackebrandt E. 1983; Molecular systematics of prokaryotes. Annual Review of Microbiology 37:143–187
    [Google Scholar]
  19. Schroth M. N., Hildebrand D. C., Starr M. P. 1981; Phytopathogenic members of the genus Pseudomonas . In The Prokaryotes pp 701–718 Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G. Edited by Berlin: Springer-Verlag;
    [Google Scholar]
  20. Selander R. K. 1985; Protein polymorphism and the genetic structure of natural populations of bacteria. In Population Genetics and Molecular Evolution pp 85–106 Ohta T., Aoki K. Edited by Berlin: Springer-Verlag;
    [Google Scholar]
  21. Selander R. K., Mckinney R. M., Whittam T. S., Bibb W. F., Brenner D. J., Nolte F. S., Pattison P. E. 1985; Genetic structure of populations of Legionella pneumophila . Journal of Bacteriology 163:1021–1037
    [Google Scholar]
  22. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied Environmental Microbiology 51:873–884
    [Google Scholar]
  23. Silhavy T. J., Berman M. L., Enquist L. W. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Smith G. E., Summers M. D. 1980; The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Analytical Biochemistry 109:123–129
    [Google Scholar]
  25. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea . Journal of Bacteriology 169:5789–5794
    [Google Scholar]
  26. Whittam T. S., Clarke A. G., Stoneking M., Cann R. L., Wilson A. C. 1986; Allelic variation in human mitochondrial genes based on patterns of restriction site polymorphism. Proceedings of the National Academy of Sciences of the United States of America 83:9611–9615
    [Google Scholar]
  27. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the MBmp 18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  28. Young J. M., Dye D. W., Bradbury J. F., Panagopoulos C. G., Robbs C. F. 1978; A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research 21:153–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-7-1949
Loading
/content/journal/micro/10.1099/00221287-134-7-1949
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error