Comparison of 16S rRNA Sequences from the Family Pasteurellaceae: Phylogenetic Relatedness by Cluster Analysis Free

Abstract

The taxonomy of the family Pasteurellaceae has remained controversial despite investigations of biochemistry, serology, and nucleic acid relatedness. In an attempt to resolve some of this confusion, we have partially sequenced the 16S rRNAs of seven members of the family, representing all three genera. The sequences were aligned, similarity scores calculated, and single, average and complete linkage cluster analysis of the resulting distance matrix performed. In this way, an evolutionary branching pattern of these closely related species was recontructed, and the approximate phylogenetic position of the family determined. clustered with instead of , supporting transfer of this species to the genus . Thus cluster analysis of phylogenetic relatedness was found to be particularly useful for studying closely related organisms, and could be performed using a microcomputer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-7-1923
1988-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/7/mic-134-7-1923.html?itemId=/content/journal/micro/10.1099/00221287-134-7-1923&mimeType=html&fmt=ahah

References

  1. Albritton W. L., Setlow J. K., Thomas M. L., Sottnek F. O. 1986; Relatedness within the family Pasteurellaceae as determined by genetic transformation. International Journal of Systematic Bacteriology 36:103–106
    [Google Scholar]
  2. Auffray C., Rougeon F. 1980; Purification of mouse immunoglobulin heavy chain messenger RNAs from total myeloma tumor RNA. European Journal of Biochemistry 107:303–314
    [Google Scholar]
  3. Bisgaard M., Phillips J. E., Mannheim W. 1986; Characterization and identification of bovine and ovine Pasteurellaceae isolated from the oral cavity and rumen of apparently normal sheep. Acta pathologica et microbiologia scandinavica B 94:9–17
    [Google Scholar]
  4. Brondz I., Olsen I. 1985; Differentiation between major species of Actinobacillus-Haemophi- lus-Pasteurella group by gas chromatography of trifluoracetic acid anhydride derivatives from whole-cell methanolysates. Journal of Chromatography 342:13–23
    [Google Scholar]
  5. Broom A. K., Sneath P. H. A. 1981; Numerical taxonomy of Haemophilus. Journal of General Microbiology 126:123–149
    [Google Scholar]
  6. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 75:4801–4805
    [Google Scholar]
  7. Carbon P., Ebel J.-P., Ehresmann C. 1981; The sequence of the ribosomal 16S RNA from Proteus vulgaris: sequence comparison with E. coli 16S RNA and its use in secondary structure model building. Nucleic Acids Research 9:2325–2333
    [Google Scholar]
  8. Christiansen C., Hansen E., Friis-Moller A. 1981; Homology between DNA from selected strains of the genera Pasteurella, Actinobacillus, and Haemophilus. In Haemophilus, Pasteurella, and Actinobacillus pp. 158–160 Kilian M., Frederiksen W., Biberstein E. L. Edited by London: Academic Press;
    [Google Scholar]
  9. Coykendall A. L., Setterfield J., Slots J. 1983; Deoxyribonucleic acid relatedness among Actinobacillus actinomycetemcomitans, Haemophilus aphro- philus, and other Actinobacillus species. International Journal of Systematic Bacteriology 33:422–424
    [Google Scholar]
  10. Escande F., Grimont F., Grimont P. A. D., Bercoviehr H. 1984; Deoxyribonucleic acid relatedness among strains of Actinobacillus spp. and Pasteurella ureae. International Journal of Systematic Bacteriology 34:309–315
    [Google Scholar]
  11. Feng D.-F., Johnson M. S., Doolittle R. F. 1985; Aligning amino acid sequences: comparison of commonly used methods. Journal of Molecular Evolution 21:112–125
    [Google Scholar]
  12. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Ranner R. S., Magrum L. J., Zablen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  13. Friis-Moller A. 1981; A new Actinobacillus species from the human respiratory tract: Actinobacillus hominis nov. sp. In Haemophilus, Pasteurella, and Actinobacillus pp. 151–157 Kilian M., Frederiksen W., Biberstein E. L. Edited by London: Academic Press;
    [Google Scholar]
  14. Göbel U., Maas R., Clad A. 1987a; Quantitative electroelution of oligonucleotides and large DNA fragments from gels and purification by electrodialysis. Journal of Biochemical and Biophysical Methods 14:245–260
    [Google Scholar]
  15. Göbel U., Gaiser A., Stanbridge E. J. 1987b; Oligonucleotide probes complementary to variable regions of ribosomal RNA discriminate between Mycoplasma species. Journal of General Microbiology 133:1969–1974
    [Google Scholar]
  16. Green C. J., Stewart G. C., Hollis M. A., Vold B. S., Bott K. F. 1985; Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon rrnB. Gene 37:261–266
    [Google Scholar]
  17. Huysmans E., De wachter R. 1986; Compilation of small ribosomal subunit sequences. Nucleic Acids Research 14: suppl. r73–r118
    [Google Scholar]
  18. Jarsch M., Böck A. 1985; Sequence of the 16S ribosomal RNA gene from Methanococcus vannielii. Systematic and Applied Microbiology 6:54–59
    [Google Scholar]
  19. Johnson A. M., Murray P. J., Illana S., Baverstock P. J. 1987; Rapid nucleotide sequence analysis of the small subunit ribosomal RNA of Toxoplasma gondii: evolutionary implications for the Apicomplexa. Molecular and Biochemcial Parasitology 25:239–246
    [Google Scholar]
  20. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S rRNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 82:6955–6959
    [Google Scholar]
  21. Lau P. P., Debrunner-Vossbrink B., Dunn B., Miotto K., Macdonnel M. T., Rollins D. M., Pillidge C. J., Hespell R. B., Colwell R. R., Sogin M. L., Fox G. E. 1987; Phylogenetic diversity and position of the genus Campylobacter. Systematic and Applied Microbiology 9:231–238
    [Google Scholar]
  22. Macinnes J. I., Rosendal S. 1987; Analysis of major antigens of Haemophilus (Actinobacillus) pleuropneumoniae and related organisms. Infection and Immunity 55:1626–1634
    [Google Scholar]
  23. Mutters R., Piechulla K., Mannheim W. 1984; Phenotypic differentiation of Pasteurella sensu strictu and the Actinobacillus group. European Journal of Clinical Microbiology 3:225–229.NEARHOS
    [Google Scholar]
  24. Needleman S. B., Wunsch C. D. 1970; A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48:443–453
    [Google Scholar]
  25. Olsen G. J., Lane E. J., Giovannoni S. J., Pace N. R., Stahl D. A. 1986; Microbial ecology and evolution: a ribosomal RNA approach. Annual Review of Microbiology 40:337–355
    [Google Scholar]
  26. Pace N. R., Olsen G. J., Woese C. R. 1986; Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45:325–326
    [Google Scholar]
  27. Pohl S., Bertschinger H. U., Frederiksen W., Mannheim W. 1983; Transfer of Haemophilus pleuropneumoniae and the Pasteurella haemolytica like organisms causing porcine necrotic pleuropneumonia to the genus Actinobacillus (Actinobacillus pleuropneumoniae comb, nov.) on the basis of phenotypic and deoxyribonucleic acid relatedness. International Journal of Systematic Bacteriology 33:510–514
    [Google Scholar]
  28. Potts T. V., Berry E. M. 1983; Deoxyribonucleic acid-deoxyribonucleic acid hybridization analysis of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus. International Journal of Systematic Bacteriology 33:765–771
    [Google Scholar]
  29. Potts T. V., Zambon J. J., Genco R. J. 1985; Reassignment of Actinobacillus actinomycetemcomitans to the genus Haemophilus as Haemophilus actinomycetemcomitans comb. nov. International Journal of Systematic Bacteriology 35:337–341
    [Google Scholar]
  30. ROMANIUK P. J., ZOLTOWSKB B. A., TRUST T. J., LANE D., OLSEN G. J., PACE N. R., STAHL D. A. 1987; Campylobacterpylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. Journal of Bacteriology 169:2137–2141
    [Google Scholar]
  31. Sneath P. H. A., Stevens M. 1985; A numerical taxonomic study of Actinobacillus, Pasteurella and Yersinia. Journal of General Microbiology 131:2711–2738
    [Google Scholar]
  32. Tomioka N., Sugiura M. 1983; The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Molecular and General Genetics 191:46–50
    [Google Scholar]
  33. Wilson A. C., Ochman H., Prager E. M. 1987; Molecular time scale for evolution. Trends in Genetics 3:241–247
    [Google Scholar]
  34. Wishart D. 1987 Clustan User Manual(Release 3.2) Edinburgh: Program Library Unit, Edinburgh University;
    [Google Scholar]
  35. Woese C. R. 1987; Bacterial evolution. Microbiological Reviews 51:221–271
    [Google Scholar]
  36. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of the purple subgroup bacteria: the gamma subdivision. Systematic and Applied Microbiology 6:25–33
    [Google Scholar]
  37. Yang F., Oyaizu Y., Oyaizu H., Olsen G. J., Woese C. R. 1985; Mitochondrial orgins. Proceedings of the National Academy of Sciences of the United States of America 82:4443–4447
    [Google Scholar]
  38. Zuckerkandel E., Pauling L. 1965; Molecules as documents of evolutionary history. Journal of Theoretical Biology 8:357–366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-7-1923
Loading
/content/journal/micro/10.1099/00221287-134-7-1923
Loading

Data & Media loading...

Most cited Most Cited RSS feed