1887

Abstract

In contrast to a previous report, strains of were found to take up and phosphorylate the disaccharide sucrose via the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS). In addition to the two soluble and general components enzymeI and HPr of the PTS, a sucrose-specific enzymeII (gene ), together with the enzymeIII, coded for by the gene , were needed for the vectorial phosphorylation of sucrose to generate intracellular sucrose 6-phosphate. This sugar phosphate is hydrolysed by a hydrolase (invertase, gene ) to generate glucose 6-phosphate and free fructose. The latter is converted to fructose 6-phosphate by an ATP-dependent fructokinase (gene ), an enzyme which is part of the sucrose and not of the fructose catabolic pathway. Analysis of different mutants of strain 1033, and of K12 derivatives carrying R′ plasmids isolated from , showed that the genes , and , together with a gene for a repressor, form a genetic unit located on the chromosome of These genes and the corresponding sucrose metabolic pathway are very similar to a previously described system encoded on plasmid pUR400 and found in other enteric bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-6-1635
1988-06-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/6/mic-134-6-1635.html?itemId=/content/journal/micro/10.1099/00221287-134-6-1635&mimeType=html&fmt=ahah

References

  1. Adler J., Epstein W. 1974; Phosphotransferase- system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proceedings of the National Academy of Sciences of the United States of America 71:2895–2899
    [Google Scholar]
  2. Amory A., Kunst F., Aubert E., Klier A., Rapoport G. 1987; Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. Journal of Bacteriology 169:324–333
    [Google Scholar]
  3. Arber W. 1960; Transduction of chromosomal genes and episomes in E. coli. Virology 11:273–288
    [Google Scholar]
  4. Aymerich S., Gonzy tréboul G., Steinmetz M. 1986; 5′-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. Journal of Bacteriology 166:993–998
    [Google Scholar]
  5. Bachmann B. J. 1983; Linkage map of Escherichia coli K-12. , Edition 7.. Microbiological Reviews 41:180–230
    [Google Scholar]
  6. Chumley F. G., Menzel R., Roth J. R. 1979; Hfr formation directed by Tnl0. Genetics 91:639–655
    [Google Scholar]
  7. Curtis S. J., Epstein W. 1975; Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotrans-ferase, and glucokinase. Journal of Bacteriology 122:1189–1199
    [Google Scholar]
  8. Gershanovitch V. N., Ilyina T. S., Rusina O. Y., Yourovitskaya N. V., Bolshakova T. N. 1977; Repression of inducible enzymes synthesis in a mutant of Escherichia coli. Molecular and General Genetics 153:185–190
    [Google Scholar]
  9. Van Gijsegem F., Toussaint A. 1982; Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae and Proteus mirabilis. Plasmid 7:30–44
    [Google Scholar]
  10. Kelker N. E., Hanson T. E., Anderson R. L. 1970; Alternate pathways of d-fructose metabolism in Aerobacter aerogenes. Journal of Biological Chemistry 245:2060–2065
    [Google Scholar]
  11. Le Minor L., Coynault C., Rhode R., Rowe B., Aleksic S. 1973; Localisation plasmidique du determinant génétique du caractere atypique ‘Sac-charose+’ des Salmonella. Annales de I’Institut PasteurIMicrobiologie 124B:295–306
    [Google Scholar]
  12. Lengeler J. W. 1979; Streptozotocin, an antibiotic superior to penicillin in the selection of rare bacterial mutations. FEMS Microbiology Letters 5:417–419
    [Google Scholar]
  13. Lengeler J., Lin E. C. C. 1972; Reversal of the mannitol-sorbitol diauxie in Escherichia coli. Journal of Bacteriology 112:840–848
    [Google Scholar]
  14. Lengeler J., Hermann K. O., Unsöld H. J., Boos W. 1971; The regulation of the β-methyl-galactoside transport system and of the galactose binding protein of Escherichia coli K12. European Journal of Biochemistry 19:457–470
    [Google Scholar]
  15. Lengeler J., Auburger A. M., Mayer R., Pecher A. 1981; The phosphoenolpyruvate-de-pendent carbohydrate: phosphotransferase system EnzymesII as chemoreceptors in chemotaxis of Escherichia coli K12. Molecular and General Genetics 183:163–170
    [Google Scholar]
  16. Lengeler J. W., Mayer R. J., Schmid K. 1982; Phosphoenolpyruvate-dependent phosphotransferase system Enzymelll and plasmid-encoded sucrose transport in Escherichia coli K-12. Journal of Bacteriology 151:468–471
    [Google Scholar]
  17. Lepesant J. A., Kunst F., Pascal M., Kejzlavora-Lepesant J., Steinmetz M., Dedonder R. 1976; Specific and pleiotropic regulatory mechanisms in the sucrose system of Bacillus subtilis 168. In Microbiology 1976 pp. 58–69 Schles-singer D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Mimura C. S., Eisenberg L. B., Jacobson G. R. 1984; Resolution of the phosphotransferase enzymes of Streptococcus mutans: purification and preliminary characterization of a heat-stable phos-phocarrier protein. Infection and Immunity 44:708–715
    [Google Scholar]
  19. Mortlock R. P. 1982; Regulatory mutations and the development of new metabolic pathways by bacteria. In Evolutionary Biology pp. 205–268 Hetch M. K., Wallace B., Prance C. T. Edited by New York: Plenum;
    [Google Scholar]
  20. Neijssel O. M., Tempest D. W., Postma P. W., Duine J. A., Frank J. Jn 1983; Glucose metabolism by K+-limited Klebsiella aerogenes:evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiology tetters 20:35–39
    [Google Scholar]
  21. Postma P. W., Lengeler J. W. 1985; Phospho-enolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiological Reviews 49:232–269
    [Google Scholar]
  22. Saier M. H. Jr Young W. S., Roseman S. 1971; Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking Enzymel of the phosphoenolpyruvate-dependent phosphotransferase system. Journal of Biological Chemistry 246:5838–5840
    [Google Scholar]
  23. Schmid K., Ritschewald S., Schmitt R. 1979; Relationships among raffinose plasmids determined by the immunochemical cross-reaction of their α-galactosidases. Journal of General Microbiology 114:477–481
    [Google Scholar]
  24. Schmid K., Schupfner M., Schmitt R. 1982; Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-l2. Journal of Bacteriology 151:68–76
    [Google Scholar]
  25. Schmid K., Ebner R., Altenbuchner J., Schmitt R., Lengeler J. W. 1988; Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Molecular Microbiology 2:1–8
    [Google Scholar]
  26. Sebastian J., Asensio C. 1972; Purification and properties of the mannokinase from Escherichia coli. Archives of Biochemistry and Biophysics 151:227–233
    [Google Scholar]
  27. Sprenger G. A., Lengeler J. W. 1984; L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli and chemotaxis toward sorbose. Journal of Bacteriology 157:39–45
    [Google Scholar]
  28. Sprenger G. A., Vogler A., Lengeler J. W. 1986; Selection of auxotrophic and carbohydratenegative mutants in penicillin-resistant Klebsiella pneumoniae by nalidixic acid treatment. FEMS Microbiology Letters 37:299–304
    [Google Scholar]
  29. Sprenger G. A., Lengeler J. W. 1987; Mapping of the sor genes for l-sorbose degradation in the chromosome of Klebsiella pneumoniae. Molecular and General Genetics 209:352–359
    [Google Scholar]
  30. St martin E. J., Wittenberger C. L. 1979; Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. Infection and Immunity 24:865–868
    [Google Scholar]
  31. Tanaka S., Lerner S. A., Lin E. C. C. 1967; Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. Journal of Bacteriology 93:642–648
    [Google Scholar]
  32. Wohlhieter J. A., Lazere J. R., Snellings N. R., Johnson E. M., Synenki R. M., Baron L. S. 1975; Characterization of transmissible genetic elements from sucrose-fermenting Salmonellastrains. Journal of Bacteriology 122:401–406
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-6-1635
Loading
/content/journal/micro/10.1099/00221287-134-6-1635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error