1887

Abstract

A 2·8 kb I fragment of 168W DNA has been cloned into HB101 and AG5 using pAC3 as a shuttle plasmid. The new plasmid (pBRG1), of 10·2 kb, complemented mutations which show reduced production of autolysin(s), filamentation and non-motility (deficiency of flagella). Deletion experiments showed that the suppressive gene is located between the III and I sites (1·0 kb apart) in pBRG1. The integration of a plasmid having chloramphenicol resistance closely linked to the gene into the AC703 chromosome and its genetic analysis indicated that the cloned fragment contained the gene itself. A high-copy-number plasmid carrying the cloned gene did not lead to an increase in autolysin production above the wild-type level, but it changed the colony morphology from smooth to rough. Among several autolysin-deficient mutations, was suppressed only by the high-copy-number plasmid carrying the cloned gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-6-1611
1988-06-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/6/mic-134-6-1611.html?itemId=/content/journal/micro/10.1099/00221287-134-6-1611&mimeType=html&fmt=ahah

References

  1. Akamatsu T., Sekiguchi J. 1983a; Selection methods in bacilli for recombinants and transformants of intra- and interspecific fused protoplasts. Archives of Microbiology 134:303–308
    [Google Scholar]
  2. Akamatsu T., Sekiguchi J. 1983b; Properties of regeneration mutants of Bacillus subtilis. FEMS Microbiology Letters 20:425–428
    [Google Scholar]
  3. Akamatsu T., Sekiguchi J. 1984; An improved method of protoplast regeneration for Bacillusspecies and its application to protoplast fusion and transformation. Agricultural and Biological Chemistry 48:651–655
    [Google Scholar]
  4. Akamatsu T., Sekiguchi J. 1987a; Genetic mapping by means of protoplast fusion in Bacillus subtilis. Molecular and General Genetics 208:254–262
    [Google Scholar]
  5. Akamatsu T., Sekiguchi J. 1987b; Characterization of chromosome and plasmid transformation in Bacillus subtilis using gently lysed protoplasts. Archives of Microbiology 146:353–357
    [Google Scholar]
  6. Akamatsu T., Sekiguchi J. 1987c; Genetic mapping and properties of filamentous mutations in Bacillus subtilis. Agricultural and Biological Chemistry 51:2901–2909
    [Google Scholar]
  7. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. Journal of Bacteriology 81:741–746
    [Google Scholar]
  8. Ayusawa D., Yoneda Y., Yamane K., Maruo B. 1975; Pleiotropic phenomena in autolytic enzyme(s) content, flagellation, and simultaneous hyperproduction of extracellular α-amylase and protease in a Bacillus subtilis mutant. Journal of Bacteriology 124:459–469
    [Google Scholar]
  9. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  10. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  11. Chatterjee A. N., Wong W., Young F. E., Gilpin R. W. 1976; Isolation and characterization of a mutant of Staphylococcus aureus deficient in autolytic activity. Journal of Bacteriology 125:961–967
    [Google Scholar]
  12. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Ehrlich S. D. 1978; DNA cloning in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 75:1433–1436
    [Google Scholar]
  14. Fein J. E. 1979; Possible involvement of bacterial autolytic enzymes in flagellar morphogenesis. Journal of Bacteriology 137:933–946
    [Google Scholar]
  15. Fein J. E., Rogers H. J. 1976; Autolytic enzyme-deficient mutants of Bacillus subtilis 168. Journal of Bacteriology 127:1427–1442
    [Google Scholar]
  16. Forsberg C. W., Wyrick P. B., Ward J. B., Rogers H. J. 1973; Effect of phosphate limitation on the morphology and wall composition of Bacillus licheniformis and its phosphoglucomutase-deficient mutants. Journal of Bacteriology 113:969–984
    [Google Scholar]
  17. García E., García J.-L., Ronda C., García P., López R. 1985; Cloning and expression of the pneumococcal autolysin gene in Escherichia coli. Molecular and General Genetics 201:225–230
    [Google Scholar]
  18. García P., García J.-L., García E., López R. 1986; Nucleotide sequence and expression of the pneumococcal autolysin gene from its own promoter in Escherichia coli. Gene 43:265–272
    [Google Scholar]
  19. Grant G. F., Simon M. I. 1969; Synthesis of bacterial flagella. II. PBS1 transduction of flagella-specific markers in Bacillus subtilis. Journal of Bacteriology 99:116–124
    [Google Scholar]
  20. Gryczan T. J., Contente S., Dubnau D. 1978; Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. Journal of Bacteriology 134:318–329
    [Google Scholar]
  21. Guerry P., Leblanc D. J., Falkow S. 1973; General method for the isolation of plasmid deoxyribonucleic acid. Journal of Bacteriology 116:1064–1066
    [Google Scholar]
  22. Herbold D. R., Glaser L. 1975; Bacillus subtilis N-acetylmuramic acid l-alanine amidase. Journal of Biological Chemistry 250:1676–1682
    [Google Scholar]
  23. Höltje J. V., Tomasz A. 1976; Purification of the pneumococcal N-acetylmuramyl-l-alanine amidase to biochemical homogeneity. Journal of Biological Chemistry 251:4199–4207
    [Google Scholar]
  24. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. Journal of Bacteriology 150:815–825
    [Google Scholar]
  25. Karamata D., Mcconnell M., Rogers H. J. 1972; Mapping of rod mutants of Bacillus subtilis. Journal of Bacteriology 111:73–79
    [Google Scholar]
  26. Kreft J., Burger K. J., Goebel W. 1983; Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis. Molecular and General Genetics 190:384–389
    [Google Scholar]
  27. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  28. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning, a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Mendelson N. H. 1982; Bacterial growth and division: genes, structures, forces, and clocks. Microbiological Reviews 46:341–375
    [Google Scholar]
  30. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  31. Pooley H., Karamata D. 1984a; Flagellation and the control of autolysin activity in Bacillus subtilis. In Microbial Cell Wall Synthesis and Autolysis pp. 13–19 Nombela C. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  32. Pooley H., Karamata D. 1984b; Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. Journal of Bacteriology 160:1123–1129
    [Google Scholar]
  33. Rogers H. J., Perkins H. R., Ward J. B. 1980 Microbial Cell Walls and Membranes London: Chapman & Hall;
    [Google Scholar]
  34. Rogers H. J., Taylor C., Rayter S., Ward J. B. 1984; Purification and properties of autolytic endo-β -N-acetylglucosaminidase and the N-acetylmuramyl-l-alanine amidase from Bacillus subtilis strain 168. Journal of General Microbiology 130:2395–2402
    [Google Scholar]
  35. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochimica et biophysica acta 72:619–629
    [Google Scholar]
  36. Sekiguchi J., Takada N., Okada H. 1975; Genes affecting the productivity of a-amylase in Bacillus subtilis Marburg. Journal of Bacteriology 121:688–694
    [Google Scholar]
  37. Sharp P. A., Sugden B., Sambrook J. 1973; Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agar- ose-ethidium bromide electrophoresis. Biochemistry 12:3055–3063
    [Google Scholar]
  38. Shungu D. L., Cornett J. B., Shockman G. D. 1979; Morphological and physiological study of autolytic-defective Streptococcus faecium strains. Journal of Bacteriology 138:598–608
    [Google Scholar]
  39. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  40. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America 44:1072–1078
    [Google Scholar]
  41. Steinmetz M., Kunst F., Dedonder R. 1976; Mapping of mutations aifecting synthesis of exocellular enzymes in Bacillus subtilis: identity of the sacUh, amyB and pap mutations. Molecular and General Genetics 148:281–285
    [Google Scholar]
  42. Tomasz A. 1984; Building and breaking of bonds in the cell wall of bacteria - the role for autolysins. In Microbial Cell Wall Synthesis and Autolysis pp. 3–12 Nombela C. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  43. Tomioka S., Nikaido T., Miyakawa T., Matsuhashi M. 1983; Mutation of the N-acetylmuramyl-l-alanine amidase gene of Escherichia coli K-12. Journal of Bacteriology 156:463–465
    [Google Scholar]
  44. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-6-1611
Loading
/content/journal/micro/10.1099/00221287-134-6-1611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error