1887

Abstract

Fifty-five lytic bacteriophages isolated from water and soil samples were active on many strains of the genus The optimal isolation procedure was an adsorption method in which samples from a habitat similar to that of the respective host bacterium were used as the phage inoculum. According to the morphology and nucleic acid type these bacteriophages belonged to different families: (type A1: five phages); (type B1: 33 phages; type B2: eight phages) and (type C1: nine phages). The (type B1) appeared in two morphological variants (tails flexible or rigid). All phages investigated were specific for the genus and were unable to lyse members of other genera of hyphal, budding bacteria (e.g. , genus D, genus T). The host specificity of 42 phages was tested with 156 strains: 122 strains were lysed by at least one of these phages, but 34 strains were not susceptible. Morphotype B1 phages with identical morphology could be distinguished according to their host-range properties on prophage-containing strains. With regard to differences in morphology and host range, 25 phages were selected for more detailed investigations. From these phages DNA was isolated; the melting transition midpoints ( ) ranged from 67 to 93 C. The upper and higher values suggested the presence of DNA modifications. Six different adsorption patterns could be distinguished among the phages. Preferred attachment sites were the proximal pole of the mother cell, the hyphal tip, the distal pole of the bud, and the distal pole of the swarmer cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-5-1339
1988-05-01
2021-10-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/5/mic-134-5-1339.html?itemId=/content/journal/micro/10.1099/00221287-134-5-1339&mimeType=html&fmt=ahah

References

  1. Ackermann H.-W., Eisenstark A. 1974; The present state of phage taxonomy. Intervirology 3:201–219
    [Google Scholar]
  2. Ackermann H. -W., Audurier A., Berthiaume L., Jones L. A., Mayo J. A., Vidaver A. K. 1978; Guidelines for bacteriophage characterization. Advances in Virus Research 23:1–24
    [Google Scholar]
  3. Adams M. H. 1959 Bacteriophages New York, London & Sydney: Interscience;
    [Google Scholar]
  4. Attwood M. M., Harder W. 1972; A rapid and specific enrichment procedure for Hyphomicrobium spp. Antonie van Leeuwenhoek 38:369–378
    [Google Scholar]
  5. Auling G., Mayer F., Schlegel H. G. 1977; Isolation and partial characterization of normal and defective bacteriophages of Gram-negative hydrogen bacteria. Archives of Microbiology 115:237–247
    [Google Scholar]
  6. Bradley D. E. 1966; The fluorescent staining of bacteriophage nucleic acids. Journal of General Microbiology 44:383–391
    [Google Scholar]
  7. Davis R. W., Botstein D., Roth I. R. 1980 >Advanced Bacterial Genetics Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  8. Eisenstark A. 1967; Bacteriophage techniques. Methods in Virology 1:449–524
    [Google Scholar]
  9. Gebers R., Mandel M., Hirsch P. 1981; Deoxyribonucleic acid base composition and nucleotide distribution of Pedomicrobium spp. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene (Abteilung I, Originate C) 2:332–338
    [Google Scholar]
  10. Gebers R., Wehmeyer U., Roggentin T., Schlesner H., Kölbel-Boelke J., Hlrsch P. 1985; Deoxyribonucleic acid base compositions and nucleotide distributions of 65 strains of budding bacteria. International Journal of Systematic Bacteriology 35:260–269
    [Google Scholar]
  11. Harder W., Attwood M. M. 1978; Biology, physiology and biochemistry of hyphomicrobia. Advances in Microbial Physiology 17:303–359
    [Google Scholar]
  12. Hirsch P. 1974; Budding bacteria. Annual Review of Microbiology 28:391–444
    [Google Scholar]
  13. Hirsch P., Conti S. F. 1964; Biology of budding bacteria. I. Enrichment, isolation and morphology of Hyphomicrobium spp. Archiv für Mikrobiologie 48:339–357
    [Google Scholar]
  14. Hirsch P., Rheinheimer G. 1968; Biology of budding bacteria. V. Budding bacteria in aquatic habitats: occurrence, enrichment and isolation. Archiv für Mikrobiologie 62:289–306
    [Google Scholar]
  15. Katzenelson E., Fattal B., Hostovesky T. 1976; Organic flocculation: an efficient second- step concentration method for the detection of viruses in tap water. Applied and Environmental Microbiology 32:638–639
    [Google Scholar]
  16. Kingma-Boltjes T. Y. 1936; Über Hyphomicrobium vulgare Stutzer et Hartleb. Archiv für Mikrobiologie 7:188–205
    [Google Scholar]
  17. Lembke J., Krusch U., Lompe A., Teuber M. 1980; Isolation and ultrastructure of bacteriophages of group N (lactic) streptococci. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene (Abteilung I, Originate C) 1:79–91
    [Google Scholar]
  18. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. Journal of Bacteriology 101:333–338
    [Google Scholar]
  19. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Matzen N., Hirsch P. 1982; Improved growth conditions for Hyphomicrobium sp. B-522 and two additional strains. Archives of Microbiology 131:32–35
    [Google Scholar]
  21. Matzen N. 1982 Makromolekulare Synthesen bei der Morphogenese synchroner Hyphomicrobium sp. B-522 Schwarmer PhD thesis University of Kiel, FRG;
    [Google Scholar]
  22. Mevius W. Jr 1953; Beiträge zur Kenntnis von Hyphomicrobium vulgare Stutzer et Hartleb. Archiv für Mikrobiologie 19:1–29
    [Google Scholar]
  23. Moore R. L. 1981a; The biology of Hyphomicrobium and other prosthecate, budding bacteria. Annual Review of Microbiology 35:567–594
    [Google Scholar]
  24. Moore R. L. 1981b; The genera Hyphomicrobium, Pedomicrobium, and Hyphomonas. In The Prokaryotes 1 pp. 480–487 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Edited by Berlin & Heidelberg: Springer-Verlag;
    [Google Scholar]
  25. Morgan P., Dow C. S. 1985; Environmental control of cell-type expression in prosthecate bacteria. In Bacteria in Their Natural Environments pp. 131–170 Fletcher M., Floodgate G. Edited by London: Academic Press;
    [Google Scholar]
  26. Poindexter J. S. 1981; The caulobacters: ubiquitous unusual bacteria. Microbiological Reviews 45:123–179
    [Google Scholar]
  27. Purdy R. N., Dancer B. N., Day M. J., Stickler D. J. 1984; A novel technique for the enumeration of bacteriophage from water. FEMS Microbiology Letters 21:89–92
    [Google Scholar]
  28. Schleif R. F., Wensink P. C. 1981 Practical Methods in Molecular Biology New York: Springer- Verlag;
    [Google Scholar]
  29. Schlesner H., Hirsch P. 1988; Rejection of the genus name Pirella for pear-shaped budding bacteria and proposal to create the genus Pirellula gen. nov. International Journal of Systematic Bacteriology 37:441
    [Google Scholar]
  30. Shishkina V. N., Trotsenko YU. A. 1974; Properties of a new strain of Hyphomicrobium that utilizes one-carbon compounds. Mikrobiologiya 43:765–770
    [Google Scholar]
  31. Shuval H. I., Katzenelson E. 1972; The detection of enteric viruses in the water environment. In Water Pollution Microbiology Mitchell R. Edited by New York: Wiley;
    [Google Scholar]
  32. Sperl T. G., Hoare D. S. 1971; Denitrification with methanol: a selective enrichment for Hyphomicrobium species. Journal of Bacteriology 108:733–763
    [Google Scholar]
  33. Tyler P. A., Marshall K. C. 1967; Pleomorphy in stalked, budding bacteria. Journal of Bacteriology 93:1132–1136
    [Google Scholar]
  34. Urakami T., Komagata K. 1979; Cellular fatty acid composition and coenzyme Q system in Gramnegative methanol utilizing bacteria. Journal of General and Applied Microbiology 5:343–360
    [Google Scholar]
  35. Voelz H., Gerencser V. F., Kaplan R. 1971; Bacteriophage replication in Hyphomicrobium. Virology 44:622–630
    [Google Scholar]
  36. Wallis C., Grinstein S., Melnick J. L., Fields J. E. 1969; Concentration of viruses from sewage and excreta on insoluble polyelectrolytes. Applied Microbiology 18:1007–1014
    [Google Scholar]
  37. Warren R. A. J. 1980; Modified bases in bacteriophage DNAs. Annual Review of Microbiology 34:137–158
    [Google Scholar]
  38. Wieczorek L. 1979 Ökologische Untersuchungen zum Uberleben und Wachstum von Wild- und Mutan- tenbakterien im urspriinglichen aquatischen Habitat PhD thesis Univeristy of Kiel, FRG;
    [Google Scholar]
  39. Yamamoto K. R., Alberts B. M. 1970; Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40:734–744
    [Google Scholar]
  40. Yelton D. B., Gerencser V. F., Voelz H. G. 1979; Isolation and preliminary characterization of three bacteriophages which adsorb specifically to the developing daughter cells of Hyphomicrobium. Journal of General Virology 43:29–38
    [Google Scholar]
  41. Zavarzin G. A. 1960; The life cycle and nuclear apparatus in Hyphomicrobium vulgare Stutzer et Hartleb. Microbiology USSR (English translation) 29:24–27
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-5-1339
Loading
/content/journal/micro/10.1099/00221287-134-5-1339
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error