1887

Abstract

The correlation between the melting temperature of intracellular DNA, determined by differential scanning calorimetry (DSC) of whole bacteria, and its guanine + cytosine (G + C) content, was examined for 58 species of bacteria. Samples of vegetative cells were heated in a Perkin-Elmer DSC-2C at 10 °C min from 5 to 130 °C, cooled to 5 °C and then re-heated as before. Literature values for the mole fraction of G + C, , were linearly related to the temperature, , at which the reversible peak, , observed on the second heating run was at a maximum, via the equation = ( − 73·8)/41·0. This equation accounted for 91·9% of the variance in with 95% confidence limits of ±7·3%, approximately 1·6 times the corresponding uncertainty (±4·5%) quoted by De Ley ( , 738–754, 1970) for estimates based on the spectroscopically determined melting temperature of purified DNA. Random errors of measurement of did not greatly limit the precision of the prediction and it was concluded that factors additional to base composition affected the temperature of DNA melting within the bacterial cell. Displacement of values from the fitted line was particularly noticeable in and species and part of the residual variation appeared to be species specific, possibly caused by differences in intracellular solute concentration.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-5-1185
1988-05-01
2022-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/5/mic-134-5-1185.html?itemId=/content/journal/micro/10.1099/00221287-134-5-1185&mimeType=html&fmt=ahah

References

  1. Bovre K., Fiandt M., Szybalski W. 1969; DNA base composition of Neisseria, Moraxella and Acinetobacter, as determined by measurements of buoyant density in CsCl gradients. Canadian Journal of Microbiology 15:335–338
    [Google Scholar]
  2. Carr J. G., Davies P. A., Dellaglio F., Vescovo M., Williams R. A. D. 1977; The relationship between Lactobacillus mali from cider and Lactobacillus yamanashiensis from wine. Journal of Applied Bacteriology 42:219–228
    [Google Scholar]
  3. Damadian R. 1971; Biological ion exchanger resins. I. Quantitative electrostatic correspondence of fixed charge and mobile counter ion. Biophysical Journal 11:739–759
    [Google Scholar]
  4. De Ley J. 1970; Re-examination of the association between melting point, buoyant density and chemical base composition of deoxyribonucleic acid. Journal of Bacteriology 101:738–754
    [Google Scholar]
  5. De Ley J., Segers P., Kersters K., Mannheim W., Lievens A. 1986; Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family. Alcaligenaceae. International Journal of Systematic Bacteriology 36:405–414
    [Google Scholar]
  6. De Voss P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. International Journal of Systematic Bacteriology 33:487–509
    [Google Scholar]
  7. Dove W. F., Davidson N. 1962; Cation effects on the denaturation of DNA. Journal of Molecular Biology 5:467–478
    [Google Scholar]
  8. Epstein W., Schultz S. G. 1965; Cation transport in Escherichia coli. V. Regulation of cation content. Journal of General Physiology 49:221–234
    [Google Scholar]
  9. Fahmy F., Flossdorf J., Claus D. 1985; The DNA base composition of the type strains of the genus Bacillus. Systematic and Applied Microbiology 6:60–65
    [Google Scholar]
  10. Farrow J. A. G., Jones D., Phillips B. A., Collins M. D. 1983; Taxonomic studies on some group D streptococci. Journal of General Microbiology 129:1423–1432
    [Google Scholar]
  11. Flink I., Pettijohn D. E. 1975; Polyamines stabilise DNA folds. Nature; London: 25362–63
    [Google Scholar]
  12. Frank-Kamenetskii M. D. 1971; Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers 10:2623–2624
    [Google Scholar]
  13. Garvie E. I., Zezula V., Hill V. A. 1974; Guanine plus cytosine content of the deoxyribonucleic acid of the leuconostocs and some heterofermentative lactobacilli. International Journal of Systematic Bacteriology 24:248–251
    [Google Scholar]
  14. Gasser F., Mandel M. 1968; Deoxyribonucleic acid base composition of the genus Lactobacillus. Journal of Bacteriology 96:580–588
    [Google Scholar]
  15. Hayes P. R., Wilcock A. P. D., Parish J. H. 1977; Deoxyribonucleic acid base composition of flavobacteria and related Gram-negative yellow pigmented rods. Journal of Applied Bacteriology 43:111–115
    [Google Scholar]
  16. Holmes B., Owen R. J., Weaver R. E. 1981; Flavobacterium multivorum, a new species isolated from human clinical specimens and previously known as Group Ilk, Biotype 2. International Journal of Systematic Bacteriology 31:21–34
    [Google Scholar]
  17. Holmes B., Owen R. J., Mcmeekin T. A. 1984; Genus Flavobacterium. In Bergey’s Manual of Systematic Bacteriology 1 pp. 353–361 Kreig N. R. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  18. Holzapfel W. H., Gerber S. E. 1983; Lactobacillus divergens sp. nov., a new heterofermentative Lactobacillus species producing L( + )-lactate. Systematic and Applied Microbiology 4:522–534
    [Google Scholar]
  19. Kiredjian M., Holmes B., Kersters K., Guilvout I., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. International Journal of Systematic Bacteriology 36:282–287
    [Google Scholar]
  20. Ko C. Y., Johnson J. L., Barnett L. B., Mcnair H. M., Vercellotti J. R. 1977; A sensitive estimation of the percentage of guanine plus cytosine in deoxyribonucleic acid by high performance liquid chromatography. Analytical Biochemistry 80:183–192
    [Google Scholar]
  21. Mandel M., Schildkraut C. L., Marmur J. 1968; Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. Methods in Enzymology 12B:184–195
    [Google Scholar]
  22. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  23. Marquis R. E., Carstensen E. L. 1973; Electric conductivity and internal osmolality of intact bacterial cells. Journal of Bacteriology 113:1198–1206
    [Google Scholar]
  24. Miles C. A., Mackey B. M., Parsons S. E. 1986; Differential scanning calorimetry of bacteria. Journal of General Microbiology 132:939–952
    [Google Scholar]
  25. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, New York:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Mitchell P., Moyle J. 1956; Osmotic function and structure in bacteria.Bacterial Anatomy. Symposia of the Society for General Microbiology 6:150–180
    [Google Scholar]
  27. Owen R. J., Dawson C. 1986; DNA base compositions and base sequence relatedness of atypical Campylobacter jejuni strains from clinical material. FEMS Microbiology Letters 35:285–288
    [Google Scholar]
  28. Owen R. J., Holmes B. 1978; Heterogeneity in the characteristics of DNA from Flavobacterium odoratum. FEMS Microbiology Letters 4:41–46
    [Google Scholar]
  29. Owen R. J., Holmes B. 1980; Differentiation between strains of Flavobacterium breve and allied bacteria by comparisons of deoxyribonucleic acids. Current Microbiology 4:7–11
    [Google Scholar]
  30. Owen R. J., Jackman P. J. H. 1982; The similarities between Pseudomonas paucimobilis and allied bacteria derived from analysis of deoxyribonucleic acids and electrophoretic protein patterns. Journal of General Microbiology 128:2945–2954
    [Google Scholar]
  31. Owen R. J., Leaper S. 1981; Base composition, size and nucleotide sequence similarities of genome DNA from species of the genus Campylobacter. FEMS Microbiology letters 12:395–400
    [Google Scholar]
  32. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516
    [Google Scholar]
  33. Owen R. J., Legros R. M., Lapage S. P. 1978; Base composition, size and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. Journal of General Microbiology 104:127–138
    [Google Scholar]
  34. Pitcher D. G. 1983; Deoxyribonucleic acid base composition of Corynebacterium diphtheriae and other corynebacteria with cell wall type IV. FEMS Microbiology Letters 16:291–295
    [Google Scholar]
  35. Pohl S., Bertschinger H. U., Frederiksen W., Mannheim W. 1983; Transfer of Haemophilus pleuropneumoniae and the Pasteurella haemolytica- like organisms causing porcine necrotic pleuropneumonia to the genus Actinobacillus (Actinobacillus pleuropneumoniae comb, nov.) on the basis of phenotypic and deoxyribonucleic acid relatedness. International Journal of Systematic Bacteriology 33:510–514
    [Google Scholar]
  36. Rossau R., Van Landschoot A., Mannheim W., De Ley J. 1986; Inter- and intrageneric similarities of ribosomal ribonucleic acid cistrons of the Neisseriaceae. International Journal of Systematic Bacteriology 36:323–332
    [Google Scholar]
  37. Schultz S. G., Solomon A. K. 1961; Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. Journal of General Physiology 45:355–369
    [Google Scholar]
  38. Schultz S. G., Wilson N. L., Epstein W. 1962; Cation transport in Escherichia coli. II. Intracellular chloride concentration. Journal of General Physiology 46:159–166
    [Google Scholar]
  39. Shaw B. G., Harding C. D. 1984; A numerical taxonomic study of lactic acid bacteria from vacuum-packed beef, pork, lamb and bacon. Journal of Applied Bacteriology 56:25–40
    [Google Scholar]
  40. Sjastad K., Fadnes P., Kruger P. G., Lossius I., Kleppe K. 1982; Isolation, properties and nucleo- lytic degradation of chromatin from Escherichia coli. Journal of General Microbiology 128:3037–3050
    [Google Scholar]
  41. Stock J. B., Rauch B., Roseman S. 1977; Periplasmic space in Salmonella typhimurium and Escherichia coli. Journal of Biological Chemistry 252:7850–7861
    [Google Scholar]
  42. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by re versed-phase high performance liquid chromatography. FEMS Microbiology Letters 25:125–128
    [Google Scholar]
  43. Ullman J. S., Mccarthy B. J. 1973a; The relationship between mismatched base pairs and the thermal stability of DNA duplexes. I. Effects of depurination and chain scission. Biochemica et biophysicaacta 294:405–415
    [Google Scholar]
  44. Ullman J. S., Mccarthy B. J. 1973b; The relationship between mismatched base pairs and the thermal stability of DNA duplexes. II. Effects of deamination of cytosine. Biochimica et biophysica acta 294:416–424
    [Google Scholar]
  45. Verrips C. T., Kwast R. H. 1977; Heat resistance of Citrobacter freundii in media with various water activities. European Journal of Applied Microbiology 4:225–231
    [Google Scholar]
  46. Worcel A., Burgi E. 1972; On the structure of the folded chromosome of E. coli. Journal of Molecular Biology 71:127–147
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-5-1185
Loading
/content/journal/micro/10.1099/00221287-134-5-1185
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error