1887

Abstract

The complete nucleotide sequence of the gene, which encodes the lipoamide dehydrogenase component (E3) of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes of , has been established. The flanking region 5′ to the gene contains DNA sequences which show homology to known control sites found upstream of other yeast genes. The primary structure of the protein, determined from the DNA sequence, shows strong homology to a group of flavoproteins including lipoamide dehydrogenase and pig heart lipoamide dehydrogenase. The amino acid sequence also reveals the presence of a potential targeting sequence at its -terminus which may facilitate transport to and entry into mitochondria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-5-1131
1988-05-01
2021-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/5/mic-134-5-1131.html?itemId=/content/journal/micro/10.1099/00221287-134-5-1131&mimeType=html&fmt=ahah

References

  1. Crabeel M., Nuycltun IN.., Vekdcnuekcln IV., Mes-Senguy F., Tlnel K., Cunin R., Glansdorff N. 1985; General amino acid control and specific arginine repression in Saccharomyces cerevisiae: physical study of the bifunctional regulatory region of theARG3gene. Molecular and Cellular Biology 5:3139–3148
    [Google Scholar]
  2. Delforge J., Messenguy F., Wiame J. 1975; The regulation of arginine biosynthesis inSaccharomyces cerevisiae. European Journal of Biochemistry 57:231–239
    [Google Scholar]
  3. De Marcucci O. L., Hunter A., Lindsay J. G. 1985; Low immunogenicity of the common lipo- amide dehydrogenase subunit (E3) of mammalian pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes. Biochemical Journal 226:509–517
    [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  5. Dickinson J. R., Roy D. J., Dawes I. W. 1986; A mutation affecting lipoamide dehydrogenase, pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase activities inSaccharomyces cerevisiae. Molecular and General Genetics 204:103–107
    [Google Scholar]
  6. Gribskov M., Burgess R. R. 1986; Sigma factors fromE. coli, B. subtilis,phage SP01 and phage T4 are homologous proteins. Nucleic Acids Research 14:6745–6763
    [Google Scholar]
  7. Grosschedl R., Birnstiel M. L. 1980; Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutantsin vivo. Proceedings of the National Academy of Sciences of the United States of America 77:1432–1436
    [Google Scholar]
  8. Guarente L., Lalonde B., Gifford P., Alani E. 1984; Distinctly regulated tandem upstream activation sites mediate catabolite repression of theCYClgene ofSaccharomyces cerevisiae. Cell 36:503–511
    [Google Scholar]
  9. Guest J. R., Creaghan I. T. 1973; Gene-protein relationships of the α-keto acid dehydrogenase complexes ofEscherichia coliK12: isolation and characterization of lipoamide dehydrogenase mutants. Journal of General Microbiology 75:197–210
    [Google Scholar]
  10. Guest J. R., Rice D. W. 1984; Molecular genetic approaches to the study ofE. coliflavoproteins. In Flavins and Flavoproteins pp 111–123 Bray R. C. Edited by Berlin: Walter de Gruyter;
    [Google Scholar]
  11. Von Heijne G. 1986; Mitocnonariai targeting sequences may form amphiphilic helices. EMBO Journal 5:1335–1342
    [Google Scholar]
  12. Hill D. E., Hope I. A., Macke J. P., Struhl K. 1986; Saturation mutagenesis of the yeasthis3regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Science 234:451–457
    [Google Scholar]
  13. Hunter A., Lindsay J. G. 1986; Immunological and biosynthetic studies on the mammalian 2- oxoglutarate dehydrogenase multienzyme complex. European Journal of Biochemistry 155:103–109
    [Google Scholar]
  14. Johnston M., Davis R. W. 1984; Sequences that regulate the divergentGAL1-GAL10promoter inSaccharomyces cerevisiae. Molecular and Cellular Biology 4:1440–1448
    [Google Scholar]
  15. Kochi H., Kikuchi G. 1976; Mechanism of reversible glycine cleavage reaction inArthrobacter globiformis:function of lipoic acid in the cleavage and synthesis of glycine. Archives of Biochemistry and Biophysics 173:71–81
    [Google Scholar]
  16. Kozak M. 1981; Possible role of flanking nucleotides in recognition of the AUG initiation codon by eukaryotic ribosomes. Nucleic Acids Research 9:5233–5252
    [Google Scholar]
  17. Lawson U. K., Cook K. G., Yeaman S. J. 1983; Rapid purification of bovine kidney branched-chain 2-oxoacid dehydrogenase complex containing endogenous kinase activity. FEBS tetters 157:54–58
    [Google Scholar]
  18. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  20. Mukherjee B. B., Matthews J., Horney O. L., Reed L. J. 1965; Resolution and reconstitution ofEscherichia coliα-ketoglutarate dehydrogenase complex. Journal of Biological Chemistry 240:2268–2269
    [Google Scholar]
  21. Pelham H. 1985; Activation of heat shock genes in eukaryotes. Trends in Genetics 1:31–35
    [Google Scholar]
  22. Proudfoot N. J., Brownlee G. G. 1976; 3ʹ noncoding region sequences in eukaryotic messenger RNA. Nature; London: 263211–214
    [Google Scholar]
  23. R.EED L. J. 1974; Multienzyme complexes. Accounts in Chemical Research 7:40–46
    [Google Scholar]
  24. Robinson J. R., Klein S. M., Sagers R. D. 1973; Glycine metabolism. Lipoic acid as the prosthetic group in the electron transfer protein P2fromPeptococcus glycinophilus. Journal of Biological Chemistry 248:5319–5323
    [Google Scholar]
  25. Roy D. J., Dawes I. W. 1987; Cloning and characterization of the gene encoding lipoamide dehydrogenase inSaccharomyces cerevisiae. Journal of General Microbiology 133:925–933
    [Google Scholar]
  26. Sanger F., Nicklen S., Coulsen A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  27. Smith H. O. 1980; Recovery of DNA from gels. Methods in Enzymology 65:371–380
    [Google Scholar]
  28. Spencer M. E., Guest J. R. 1985; Transcriptional analysis of the wABaceEF andIpdgenes ofE. coli. Molecular and General Genetics 200:145–154
    [Google Scholar]
  29. Stephens P. E., Lewis H. M., Darlison M. G., Guest J. R. 1983; Nucleotide sequence of the lipoamide dehydrogenase gene ofEscherichia coliK12. European Journal of Biochemistry 135:519–527
    [Google Scholar]
  30. Struhl K. 1982; Regulatory sites for HIS3 expres- sion in yeast. Nature; London: 300:284
    [Google Scholar]
  31. Wieland O. H. 1983; The mammalian pyruvate dehydrogenase complex : structure and regulation. Physiological and Biochemical Pharmacology 96:123–170
    [Google Scholar]
  32. Williams C. H.Jr Arscottl L. D., Swenson P. 1984; Active site chemical modification and se- quencing of flavoproteins. In Flavins and Flavopro-teins pp. 95–109 Bray R. C. Edited by Berlin: Walter de Gruyter;
    [Google Scholar]
  33. Winter G., Fields S. 1980; Cloning of influenza cDNA into M13 : the sequence of the RNA segment encoding the A/PR/8/34 matrix protein. . Nucleic Acids Research 8:1965–1974
    [Google Scholar]
  34. Zaret K. S., Sherman F. 1982; DNA sequences required for efficient transcription termination in yeast. Cell 28:563–573
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-5-1131
Loading
/content/journal/micro/10.1099/00221287-134-5-1131
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error