1887

Abstract

Weak acids were used to measure the internal pH of yeast cells of that had been induced to form buds or germ tubes. Under conditions that supported germ tube formation the internal pH rose from around 6·8 to over 8·0 after 30 min in two different induction media. Internal pH measured by P NMR confirmed this pattern and also showed that the internal pH fell to around 7·0 prior to the outgrowth of germ tubes. Conditions which led to budding induced less cytoplasmic alkalinization. This alkalinization was brought about when cells were inoculated into media of neutral pH and at an increased temperature. Increasing the temperature of the medium augmented the alkalinization of the cytoplasm induced by raising the external pH. Strains of defective in the ability to produce germ tubes did not show this dramatic cytoplasmic alkalinization under conditions which normally supported filamentous growth. The raising of internal pH may be due to the activation of the plasma membrane proton-pumping ATPase since diethylstilboestrol inhibited the cytoplasmic alkalinization and germ tube formation without causing irreversible loss of cell viability. The results show that the induction of the dimorphic transition in this organism is accompanied by a steep rise in internal pH. It is not known whether these changes are the cause or consequence of morphogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-5-1079
1988-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/5/mic-134-5-1079.html?itemId=/content/journal/micro/10.1099/00221287-134-5-1079&mimeType=html&fmt=ahah

References

  1. Anderson J. M., Soll D. R. 1984; Effects of zinc on stationary-phase phenotype and macromolecular synthesis accompanying outgrowth of Candida albicans. Infection and Immunity 46:13–21
    [Google Scholar]
  2. Barton J. K., Den Hollander J. A., Lee T. M., Maclaughlin A., Shulman R. G. 1980; Measurement of the internal pH of yeast spores by 31P nuclear magnetic resonance. Proceedings of the National Academy of Sciences of the United States of America 77:2470–2473
    [Google Scholar]
  3. Booth I. R., Mitchell W. J., Hamilton W. A. 1979; Quantitative analysis of proton linked transport systems: the lactose permease ofEscherichia coli. Biochemical Journal 182:687–696
    [Google Scholar]
  4. Borst-Pauwels G.W.F.H. 1981; Ion transport in yeast. Biochimica et biophysica acta 650:88–127
    [Google Scholar]
  5. Buffo J., Herman M. A., Soll D. R. 1984; A characterisation of pH-regulated dimorphism inCandida albicans. Mycopathologia 85:21–30
    [Google Scholar]
  6. Busa W. B., Nuccitelli R. 1984; Metabolic regulation via intracellular pH. American Journal of Physiology 246:R409–R438
    [Google Scholar]
  7. Cassone A., Carpinellgi G., Angiolella L., Mad-Daluno G., Podo F. 1983; 31P Nuclear magnetic resonance study of growth and dimorphic transition in Candida albicans. . Journal of General Microbiology 129:1569–1575
    [Google Scholar]
  8. Cassone A., Sullivan P. A., Shepherd M. G. 1985; N-Acetyl-d-glucosamine-induced morphogenesis inCandida albicans. Microbiologica 8:85–99
    [Google Scholar]
  9. Charbonneau M., Webb D. J. 1987; Weak bases partially activateXenopuseggs and permit changes in membrane conductance whilst inhibiting cortical granule exocytosis. Journal of Cell Science 87:205–220
    [Google Scholar]
  10. Chattaway F. W., Wheeler P. R., O'REILLY J. 1981; Involvement of adenosine 3ʹ :5ʹ-cyclic monophosphate in the germination of blastospores ofCandida albicans. Journal of General Microbiology 123:233–240
    [Google Scholar]
  11. Goffeau A., Slayman C. W. 1981; The proton- translocating ATPase of the fungal plasma membrane. Biochimica et biophysica acta 639:197–223
    [Google Scholar]
  12. Gopal P., Sullivan P. A., Shepherd M. G. 1982; Enzymes of N-acetyl-d-glucosamine metabolism during germ-tube formation inCandida albicans. Journal of General Microbiology 128:2319–2326
    [Google Scholar]
  13. Gow N. A. R., Gooday G. W. 1982; Vacuolation, branch production and linear growth of germ tubes ofCandida albicans. Journal of General Microbiology 128:2195–2198
    [Google Scholar]
  14. Gow N. A. R., Gooday G. W. 1984; A model for the germ tube formation and mycelial growth form ofCandida albicans. Sabouraudia 22:137–143
    [Google Scholar]
  15. Gow N. A. R., Henderson G., Gooday G. W. 1986; Cytological interrelationships between the cell cycle and duplication cycle ofCandida albicans. Microbios 47:97–105
    [Google Scholar]
  16. Gross J. D., Bradbury J., Kay R. R., Peacey M. J. 1983; Intracellular pH and the control of cell differentiation inDictyostelium discoideum. Nature; LOndon: 303244–245
    [Google Scholar]
  17. Herman M. A., Soll D. R. 1984; A comparison of volume growth during bud and mycelium formation inCandida albicans: a single cell analysis. Journal of General Microbiology 130:2219–2228
    [Google Scholar]
  18. Den Hollander A., Ugurbil K., Brown T. R., Shulman R. G. 1981; Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast. Biochemistry 20:5871–5880
    [Google Scholar]
  19. Hubbard M. J., Bradley M., Sullivan P. A., Shepherd M. G., Forrester I. 1982; Evidence for the occurrence of calmodulin in the yeastsCandida albicansandSaccharomyces cerevisiae. FEBS Letters 137:85–88
    [Google Scholar]
  20. Hubbard M. J., Sullivan P. A., Shepherd M. G. 1985; The kinetics and divalent cation inhibition of the plasma membrane ATPase in the yeastCandida albicans. Journal of Biological Chemistry 260:6782–6787
    [Google Scholar]
  21. Johnson J. D., Epel D., Paul M. 1976; Intracellular pH and activation of sea urchin eggs after fertilisation. Nature; LOndon: 262661–664
    [Google Scholar]
  22. Krebs H. A., Wiggins D., Stubbs M., Sols A., Bedoya F. 1983; Studies on the mechanism of the antifungal action of benzoate. Biochemical Journal 214:657–663
    [Google Scholar]
  23. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms ofCandida albicans. Sabouraudia 13:148–153
    [Google Scholar]
  24. Maresca B., Medoff G., Schlessinger D., Kobayashi G. S. 1977; Regulation of dimorphism in the pathogenic fungusHistoplasma capsulatum. Nature; LOndon: 266447–448
    [Google Scholar]
  25. Mattia E., Carruba G., Angiolella L., Cas-Sone A. 1982; Induction of germ tube formation by vV-acetyl-D-glucosamine inCandida albicans:uptake of inducer and germinative response. Journal of Bacteriology 152:555–562
    [Google Scholar]
  26. Muthukumar G., Nickerson K. W. 1984; Ca(II)-calmodulin regulation of fungal dimorphism inCeratocystis ulmi. Journal of Bacteriology 159:390–392
    [Google Scholar]
  27. Muthukumar G., Nickerson A. W., Nickerson K. W. 1987; Calmodulin levels in yeasts and filamentous fungi. FEMS Microbiology Letters 41:253–255
    [Google Scholar]
  28. Niimi M., Niimi K., Tokunaga J., Nakayama H. 1980; Changes in cyclic nucleotide levels and dimorphic transition inCandida albicans. Journal of Bacteriology 142:1010–1014
    [Google Scholar]
  29. Odds F. C. 1979 Candida and Candidosis Leicester: Leicester University Press;
    [Google Scholar]
  30. Odds F. C. 1985; Morphogenesis inCandida albicans. Critical Reviews in Microbiology 12:45–93
    [Google Scholar]
  31. Prasad R., Hofer M. 1987; The electrochemical gradient of H+inCandida albicansand its relevance to the uptake of nutrients. Biochemistry International 14:617–626
    [Google Scholar]
  32. San-Blas G., San-Blas F. 1984; Molecular aspects of fungal dimorphism. Critical Reviews in Microbiology 11:101–127
    [Google Scholar]
  33. Sanders D., Slayman C. L. 1982; Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganismNeurospora. Journal of General Physiology 80:377–402
    [Google Scholar]
  34. Shepherd M. G., Poulter R. T. M., Sullivan P. A. 1985; Candida albicans:biology, genetics and pathogenicity. Annual Review of Microbiology 39:579–614
    [Google Scholar]
  35. Soll D. R. 1985; The role of zinc in dimorphism. Current Topics in Medical Mycology 1:258–285
    [Google Scholar]
  36. Soll D. R. 1986; The regulation of cellular differentiation in the dimorphic yeastCandida albicans. Bioessays 5:5–11
    [Google Scholar]
  37. Tkachuk V. A., Men’Shikov M. Y. 1981; Effect of pH on calcium binding properties of calmodulin and its interaction with the Ca-dependent form of cyclic nucleotide phosphodiesterase. Biokhimiya 138:779–788
    [Google Scholar]
  38. Winkler M. M., Grainger J. L. 1978; Mechanism of action of NH4C1 and other weak bases in the activation of sea urchin eggs. Nature; LOndon: 273536–538
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-5-1079
Loading
/content/journal/micro/10.1099/00221287-134-5-1079
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error