1887

Abstract

-Arginine dehydrogenase activity was discovered in This enzyme was inducible by its substrate, -arginine, as well as by its product, 2-ketoarginine, but not by -arginine. The enzyme activity was measured , in the presence of artificial electron acceptors (phenazine methosulphate and iodonitrotetrazolium chloride). 2-Ketoarginine was catabolized further to 4-guanidinobutyraldehyde, 4-guanidinobutyrate and 4-aminobutyrate. Two enzymes involved, 4-guanidinobutyraldehyde dehydrogenase and guanidinobutyrase, were inducible by 2-ketoarginine; the latter enzyme was also strongly induced by 4-guanidinobutyrate. An arginine racemase activity was detected by an test. -Arginine had the potential to be catabolized via the -arginine dehydrogenase pathway and, after racemization, via the three -arginine catabolic pathways previously demonstrated in In mutants blocked in the -arginine succinyltransferase pathway, but not in the wild-type, -arginine was channelled partially into the -arginine dehydrogenase pathway. Mutations in the locus abolished growth of on 2-ketoarginine, agmatine and putrescine, and led to loss of 4-guanidinobutyraldehyde dehydrogenase and 4-aminobutyraldehyde dehydrogenase activities. Thus, these two activities appear to be due to one enzyme in The locus was mapped on the chromosome between and and was not linked to known genes involved in the three -arginine catabolic pathways. The existence of four arginine catabolic pathways illustrates the metabolic versatility of

Erratum

An erratum has been published for this content:
The Fourth Arginine Catabolic Pathway of
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-4-1043
1988-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/4/mic-134-4-1043.html?itemId=/content/journal/micro/10.1099/00221287-134-4-1043&mimeType=html&fmt=ahah

References

  1. Adams E. 1970; Enzymes and intermediates of hydroxyproline degradation. Methods in Enzymology 17B:266–306
    [Google Scholar]
  2. Archibald R. M. 1945; Colorimetric determination of urea. Journal of Biological Chemistry 157:507–518
    [Google Scholar]
  3. Bater A. J., Venables W. A., Thomas S. 1977; Allohydroxy-D-proline dehydrogenase. An inducible membrane-bound enzyme in Pseudomomas aeruginosa PAOl. Archives of Microbiology 112:287–289
    [Google Scholar]
  4. Chang Y.-F., Adams E. 1974; d-Lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. Journal of Bacteriology 117:753–764
    [Google Scholar]
  5. Chou C.-S., Rodwell V. W. 1972; Metabolism of basic amino acids in Pseudomonas putida. Journal of Biological Chemistry 247:4486–4490
    [Google Scholar]
  6. Cooper A. J. L., Meister A. 1978; Cyclic forms of the a-keto acid analogs of arginine, citrulline, homoarginine, and homocitrulline. Journal of Biological Chemistry 253:5407–5410
    [Google Scholar]
  7. Debusk R. M., Ogilvie S. 1984; Participation of an extracellular deaminase in amino acid utilization by Neurospora crassa. Journal of Bacteriology 159:583–589
    [Google Scholar]
  8. Früh R. 1984 Rekombination und Stickstoffregula- tion bei Pseudomonas aeruginosa: Untersuchungen an Mutanten ETH Dissertation no.7541
    [Google Scholar]
  9. Haas D., Holloway B. W., Schamböck A., Leisinger T. 1977; The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Molecular and General Genetics 154:7–22
    [Google Scholar]
  10. Haas D., Matsumoto H., Moretti P., Stalon V., Mercenier A. 1984; Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Molecular and General Genetics 193:437–444
    [Google Scholar]
  11. Hassse K., Schührer K. 1962; Derivate des γ- Aminobutyraldehyds und γ-Aminovaleraldehyds. Biochemische Zeitschrift 336:20–34
    [Google Scholar]
  12. Holloway B. W. 1969; Genetics of Pseudomonas. Bacteriological Reviews 33:419–443
    [Google Scholar]
  13. Holloway B. W. 1986; Chromosome mobilization and genomic organization. In The Bacteria 10 pp 217–249 Sokatch J. R. Edited by Orlando: Academic Press;
    [Google Scholar]
  14. Isaac J. H., Holloway B. W. 1968; Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. Journal of Bacteriology 96:1732–1741
    [Google Scholar]
  15. Jakoby W. B., Fredericks J. 1959; Pyrrolidine and putrescine metabolism: γ-aminobutyraldehyde dehydrogenase. Journal of Biological Chemistry 234:2145–2150
    [Google Scholar]
  16. Jann A., Stalon V., Vander Wauven C., Leisinger T., Haas D. 1986; N2-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 83:4937–4941
    [Google Scholar]
  17. Janssen D. B., Op Den Camp H. J. M., Leenen P. J. M., Van Der Drift C. 1980; The enzymes of the ammonia assimilation in Pseudomonas aeruginosa. Archives of Microbiology 124:197–203
    [Google Scholar]
  18. Krishnapillai V. 1971; A novel transducing phage. Its role in recognition of a possible new host- controlled modification system in Pseudomonas aeruginosa.x. Molecular and General Genetics 114:134–143
    [Google Scholar]
  19. Leisinger T., Haas D., Hegarty M. P. 1972; Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochimica et biophysica acta 262:214–219
    [Google Scholar]
  20. Magor A. M., Venables W. A. 1987; Solubilization, purification and characterization of d-alanine dehydrogenase from Pseudomonas aeruginosa and effects of solubilization on its properties. Biochimie 69:63–69
    [Google Scholar]
  21. Manoharan T. H., Jayaraman K. 1978; Evidence for the presence of two D-amino acid oxidases in Pseudomonas aeruginosa PAO. Proceedings of the Indian Academy of Sciences 87B:25–29
    [Google Scholar]
  22. Manoharan H. T., Jayaraman K. 1979; Mapping of the loci involved in the catabolic oxidation of L-hydroxyproline in Pseudomonas aeruginosa PAO. Molecular and General Genetics 172:99–105
    [Google Scholar]
  23. Marshall V. P., Sokatch J. R. 1968; Oxidation of d-amino acids by a particulate enzyme from Pseudomonas aeruginosa. Journal of Bacteriology 95:1419–1424
    [Google Scholar]
  24. Matsuda H., Suzuki Y. 1984; γ-Guanidinobutyr-aldehyde dehydrogenase of Vicia faba leaves. Plant Physiology 76:654–657
    [Google Scholar]
  25. Meile L., Leisinger T. 1982; Purification and properties of the bifunctional proline dehydro- genase/l-pyrroline-5-carboxylate dehydrogenase from Pseudomonas aeruginosa. European Journal of Biochemistry 129:67–75
    [Google Scholar]
  26. Meister A. 1952; Enzymatic preparation of a-keto acids. Journal of Biological Chemistry 197:309–317
    [Google Scholar]
  27. Meister A. 1954; The α-keto analogues of arginine, ornithine, and lysine. Journal of Biological Chemistry 206:577–585
    [Google Scholar]
  28. Mercenier A., Simon J.-P, Haas D., Stalon V. 1980a; Catabolism of l-arginine by Pseudomonas aeruginosa. Journal of General Microbiology 116:381–389
    [Google Scholar]
  29. Mercenier A., Simon J.-P., Vander Wauven C., Haas D., Stalon V. 1980b; Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. Journal of Bacteriology 144:159–163
    [Google Scholar]
  30. Mercenier A., Stalon V., Simon J.-P., Haas D. 1982; Mapping of the arginine deiminase gene in Pseudomonas aeruginosa. Journal of Bacteriology 149:787–788
    [Google Scholar]
  31. Miller D. L., Rodwell V. W. 1971; Metabolism of basic amino acids in Pseudomonas putida. Journal of Biological Chemistry 246:5053–5058
    [Google Scholar]
  32. Morgan A. F. 1979; Transduction of Pseudomonas aeruginosa with a mutant of bacteriophage E79. Journal of Bacteriology 139:137–140
    [Google Scholar]
  33. O’Hoy K., Krishnapillai V. 1987; Recalibration of the Pseudomonas aeruginosa strain PAO chromosome map in time units using high-frequency-of- recombination donors. Genetics 115:611–618
    [Google Scholar]
  34. Payton C. W., Chang Y.-F. 1982; Δ1-Piperi- deine-2-carboxylate reductase of Pseudomonas putida. Journal of Bacteriology 149:864–871
    [Google Scholar]
  35. Pioli D., Venables W. A., Franklin F. C. H. 1976; d-Alanine dehydrogenase. Its role in the utilization of alanine isomers as growth substrates by Pseudomonas aeruginosa PAOl. Archives of Microbiology 110:287–293
    [Google Scholar]
  36. Rella M., Mercenier A., Haas D. 1985; Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Gene 33:293–303
    [Google Scholar]
  37. Sallach H. J., Fahien L. A. 1969; Nitrogen metabolism of amino acids. In Metabolic Pathways, 3rd edn. 3 pp 1–94 Greenberg D. M. Edited by New York: Academic Press;
    [Google Scholar]
  38. Soldati L., Leisinger T., Haas D. 1982; Mapping of genes for proline and ornithine utilization in Pseudomonas aeruginosa. Experientia 38:1379
    [Google Scholar]
  39. Stalon V., Mercenier A. 1984; l-Arginine utilization by Pseudomonas species. Journal of General Microbiology 130:69–76
    [Google Scholar]
  40. Stalon V., Vander Wauven C., Momin P., Legrain C. 1987; Catabolism of arginine, citrul- line and ornithine by Pseudomonas and related bacteria. Journal of General Microbiology 133:2487–2495
    [Google Scholar]
  41. Stanisich V., Holloway B. W. 1972; A mutant sex factor of Pseudomonas aeruginosa. Genetical Research 19:91–108
    [Google Scholar]
  42. Tachiki T., Kohno H., Sugiyama K., Matsubara T., Tochikura T. 1980; Purification, properties and formation of arginine-α-ketoglutarate transaminase in Arthobacter simplex. Biochimica et bio- physica acta 615:79–84
    [Google Scholar]
  43. Vanderbilt A. S., Gaby N. S., Rodwell V. W. 1975; Intermediates and enzymes between α- ketoarginine and γ-guanidinobutyrate in the l- arginine catabolic pathway of Pseudomonas putida. Journal of Biological Chemistry 250:5322–5329
    [Google Scholar]
  44. Vander Wauven C., Piérard A., Kley-Raymann M., Haas D. 1984; Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. Journal of Bacteriology 160:928–934
    [Google Scholar]
  45. Vander Wauven C. 1985 La dègradation de Varginine, en anaérobiose et en aérobiose, chez les Pseudomonas PhD thesis Université Libre de Bruxelles;
    [Google Scholar]
  46. Voellmy R., Leisinger T. 1975; Dual role for N2- acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. Journal of Bacteriology 122:799–809
    [Google Scholar]
  47. Voellmy R., Leisinger T. 1976; Role of 4- aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. Journal of Bacteriology 128:722–729
    [Google Scholar]
  48. Waters P., Venables W. A. 1986; A complete pathway for β-alanine and β-amino-wo-butyrate catabolism in Pseudomonas aeruginosa. FEMS Microbiology Letters 34:279–282
    [Google Scholar]
  49. Wilson O. H., Holden J. T. 1969; Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W. Journal of Biological Chemistry 244:2737–2742
    [Google Scholar]
  50. Yorifuji T., Ogata K. 1971; Arginine racemase of Pseudomonas graveolens. I. Purification, crystallization, and properties. Journal of Biological Chemistry 246:5085–5092
    [Google Scholar]
  51. Yorifuji T., Kobayashi T., Tabuchi A., Shiritani Y., Yonaha K. 1983; Distribution of amidinohy- drolases among Pseudomonas and comparative studies of some purified enzymes by one-dimensional peptide mapping. Agricultural and Biological Chemistry 47:2825–2830
    [Google Scholar]
  52. Yorifuji T., Koike K., Sakurai T., Yokoyama K.-I. 1986; 4-Aminobutyraldehyde and 4-guani- dinobutyraldehyde dehydrogenases for arginine degradation in Pseudomonas putida. Agricultural and Biological Chemistry 50:2009–2016
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-4-1043
Loading
/content/journal/micro/10.1099/00221287-134-4-1043
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error