Role of Lipopolysaccharide and Complement in Susceptibility of and to Non-immune Serum Free

Abstract

The role of lipopolysaccharide (LPS) in the susceptibility of and to non-immune human serum was investigated using serum-sensitive strains of both enterobacteria. LPS from serum-resistant strains of and could activate and completely remove the serum bactericidal activity, and also showed dose-dependent anti-complement activity. These properties were mainly due to the high-molecular-mass LPS: the low-molecular-mass LPS from serum-resistant strains of and had only a slight effect on the serum bactericidal activity, and showed only low anti-complement activity, even at high concentration. The results suggest that LPS composition, especially the O-antigen polysaccharide chains, contributes to the susceptibility of and strains to complement-mediated serum bactericidal activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-4-1009
1988-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/4/mic-134-4-1009.html?itemId=/content/journal/micro/10.1099/00221287-134-4-1009&mimeType=html&fmt=ahah

References

  1. Ames B. N., Dubin D. T. 1960; The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. Journal of Biological Chemistry 255:769–775
    [Google Scholar]
  2. Ames G. F. L., Spudich N. E., Nikaido H. 1974; Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. Journal of Bacteriology 177:406–416
    [Google Scholar]
  3. Buchner H. 1889; Uber die bakterientodeWirkung des zellenfrienBlut-serums. Zentralblatt für Bakter- iologie, Parasitenkunde, Infektionskrankenheiten und Hygiene(Abteilung 1, Original Reihe A, Medizinishe Mikrobiologie und Parasitologie) 5:817–823
    [Google Scholar]
  4. Glynn A. A., Howard C. J. 1970; The sensitivity to complement of strains of Escherichia coli related to their K antigens. Immunology 18:331–346
    [Google Scholar]
  5. Glynn A. A., Ward M. E. 1970; Nature and heterogenicity of the antigens of Neisseria gonorrhoeae involved in the serum bactericidal reactions. Infection and Immunity 2:162–168
    [Google Scholar]
  6. Goldmann R. C., Joinier K., Leive L. 1984; Serum-resistant mutants of Escherichia coli 0111 contain increased lipopolysaccharide, lack of O-antigen containing capsule, and cover more of their lipid A core with O-antigen. Journal of Bacteriology 159:877–882
    [Google Scholar]
  7. Hanson R. S., Phillips J. A. 1981; Chemical composition. In Manual of Methods for General Bacteriology pp. 328–364 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Edited by Washington, DC: American Society of Microbiology;
    [Google Scholar]
  8. Hildebrant J. F., Mayer L. W., Wang S. P., Buchanan T. M. 1978; Neisseria gonorrhoeaeacquire a new principal outer membrane protein when transformed to resistance to serum bactericidal activity. Infection and Immunity 20:267–273
    [Google Scholar]
  9. Joinier K. A., Hammer C. H., Brown E. J., Cole R. J., Frank M. M. 1982; Studies on the mechanism of bacterial resistance to complement mediated killing. I. Terminal components of complement are deposited and released from Salmonella minnesota S218 without causing bacterial death. Journal of Experimental Medicine 155:797–808
    [Google Scholar]
  10. Karkhanis Y. D., Zeltner J. Y., Jackson J. J., Carlo D. J. 1978; A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Analytical Biochemistry 85:595–601
    [Google Scholar]
  11. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature; London: 227:680–685
    [Google Scholar]
  12. Liang-Takasaki C., Grossman N., Leive L. 1983; Salmonella activate complement differentially via the alternative pathway depending on the structure of their lipopolysaccharide O-antigen. Journal of Immunology 130:1867–1871
    [Google Scholar]
  13. Macintyre S., Lucken R., Owen P. 1986; Smooth lipopolysaccharide is the major antigen for mice in the surface extract from IATS serotype 6 contributing to polyvalent Pseudomonas aeruginosa vaccine PEV. Infection and Immunity 52:76–84
    [Google Scholar]
  14. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Moll A., Manning P. A., Timmis K. N. 1980; Plasmid-determined resistance to serum bactericidal activity: a major protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Infection and Immunity 28:359–367
    [Google Scholar]
  16. Morrison D. C., Kline L. F. 1977; Activation of the classical and properdin-pathways of complement by bacterial lipopolysaccharides. Journal of Immunology 118:362–368
    [Google Scholar]
  17. Munn C. B., Ishiguro E. E., Kay W. W., Trsut T. J. 1982; Role of surface components in serum resistance of virulent Aeromonas salmonicida. Infection and Immunity 36:1069–1075
    [Google Scholar]
  18. Nelson B. W., Roantree R. J. 1967; Analyses of lipopolysaccharides extracted from penicillin-resistant, serum-sensitive Salmonella mutants. Journal of General Microbiology 48:179–188
    [Google Scholar]
  19. Osborn M. J. 1966; Preparation of lipopolysaccharide from mutant strains of Salmonella. Methods in Enzymology 8:161–164
    [Google Scholar]
  20. Pangburn M. K. 1983; Activation of complement via the alternative pathway. Federation Proceedings 42:139–143
    [Google Scholar]
  21. Peterson A. A., Mcgroarty E. J. 1985; High-molecular weight components in lipopolysaccharide of Salmonella typhimurium, S. minnesota and Escherichia coli. Journal of Bacteriology 162:738–745
    [Google Scholar]
  22. Porat R., Johns M. A., Mccabe W. R. 1987; Selective pressures and lipopolysaccharide subunits as determinants of resistance of clinical isolates of Gram-negative bacilli to human serum. Infection and Immunity 55:320–328
    [Google Scholar]
  23. Rice P. A., Kasper D. L. 1977; Characterization of gonococcal antigens responsible for induction of bactericidal antibody in disseminated infection: the role of gonococcal endotoxins. Journal of Clinical Investigation 39:72–81
    [Google Scholar]
  24. Roantree R. J., Pappas N. C. 1960; The survival of strains of enteric bacilli in the blood stream as related to their sensitivity to the bactericidal effect of serum. Journal of Clinical Investigation 39:82–88
    [Google Scholar]
  25. Schiller N. L., Alazard M. J., Borowski R. S. 1984; Serum sensitivity of a Pseudomonas aeruginosa mucoid strain. Infection and Immunity 45:748–755
    [Google Scholar]
  26. Shafer W. M., Joinier K., Guyman L. F., Cohen M. S., Sparlin P. F. 1984; Serum sensitivity of Neisseria gonorrhoeae : the role of lipopolysaccharide. Journal of Infectious Diseases 149:175–183
    [Google Scholar]
  27. Sutton A., Schneerson R., Kendall-Morris S., Robbins J. B. 1982; Differential complement resistance mediates virulence of Haemophilus influenzae type b. Infection and Immunity 35:95–104
    [Google Scholar]
  28. Taylor P. W. 1975; Genetical studies of serum resistance in Escherichia coli. Journal of General Microbiology 89:57–66
    [Google Scholar]
  29. Taylor P. W. 1983; Bactericidal and bacteriolytic activity of serum against Gram-negative bacteria. Microbiological Reviews 47:46–83
    [Google Scholar]
  30. Taylor P. W., Parton R. 1977; A protein factor associated with serum resistance in Escherichia coli. Journal of Medical Microbiology 10:225–232
    [Google Scholar]
  31. Tomas J. M., Benedi V. J., Ciurana B., Jofre J. 1986; Role of the capsule and O-antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infection and Immunity 54:85–89
    [Google Scholar]
  32. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharide in polyacrylamide gels. Analytical Biochemistry 119:115–119
    [Google Scholar]
  33. Westphal O., Jann K. 1965; Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure. Methods in Carbohydrate Chemistry 5:83–91
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-4-1009
Loading
/content/journal/micro/10.1099/00221287-134-4-1009
Loading

Data & Media loading...

Most cited Most Cited RSS feed