1887

Abstract

Cell extracts of the fermentative Mollicutes B-PG9, S2, 14, S6, FH, J and G-37, and the non-fermentative PG-21, 1620 and PG-11 were examined for 39 cytoplasmic enzyme activities associated with the tricarboxylic acid (TCA) cycle, transamination, anaplerotic reactions and other enzyme activities at the pyruvate locus. Malate dehydrogenase (EC 4.2.1.2) was the only TCA-cycle-associated enzyme activity detected and it was found only in the eight species. Aspartate aminotransferase (EC 2.6.1.1) activity was detected in all Mollicutes tested except S6. Malate synthetase (EC 4.1.3.2) activity, in the direction of malate formation, was found in the eight species, but not in any of the species. Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) was detected in the direction of oxaloacetate (OAA) formation in both species, but not in any of the species. Pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), pyruvate dehydrogenase (EC 1.2.4.1) and lactate dehydrogenase (EC 1.1.1.27) activities were found in all ten Mollicutes tested. No activities were detected in any of the ten Mollicutes for aspartase (EC 4.3.1.1), malic enzyme (EC 1.1.1.40), PEP carboxytransphosphorylase (EC 4.1.1.38), PEP carboxykinase (EC 4.1.1.32) or pyruvate orthophosphate dikinase (EC 2.7.9.1). In these TCA-cycle-deficient Mollicutes the pyruvate-OAA locus may be a point of linkage for the carbons of glycolysis, lipid synthesis, nucleic acid synthesis and certain amino acids. CO fixation appears obligatory in the species and either CO fixation or malate synthesis appears obligatory in the species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-3-791
1988-03-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/3/mic-134-3-791.html?itemId=/content/journal/micro/10.1099/00221287-134-3-791&mimeType=html&fmt=ahah

References

  1. Beaman K. D., Pollack J. D. 1981; Adenylate energy charge in Acholeplasma laidlawii. . Journal of Bacteriology 146:1055–1058
    [Google Scholar]
  2. Beaman K. D., Pollack J. D. 1983; Synthesis of adenylate nucleotides by Mollicutes (mycoplasmas). Journal of General Microbiology 129:3103–3110
    [Google Scholar]
  3. Beaman K. D., Pollack J. D. 1984; Enzymatic assimilation of 14C from NaH14CO3 by extracts of Acholeplasma laidlawii B-PG9. Yale Journal of Biology and Medicine 57:897
    [Google Scholar]
  4. Bridger W. A., Ramaley R. F., Boyer P. D. 1969; Succinyl coenzyme A synthetase from Escherichia coli. Methods in Enzymology 13:70–74
    [Google Scholar]
  5. Bucher T., Pfleiderer G. 1955; Pyruvate kinase from muscle. Methods in Enzymology 1:435–440
    [Google Scholar]
  6. Castrejon-Diez J., Fisher T. N., Fisher E. II 1963; Glucose metabolism of two strains of Mycoplasma laidlawii. . Journal of Bacteriology 86:627–636
    [Google Scholar]
  7. Cocks B. G., Brake F. A., Mitchell A., Finch L. R. 1985; Enzymes of intermediary carbohydrate metabolism in Ureaplasma urealyticum and Mycoplasma mycoides subsp. mycoides. . Journal of General Microbiology 131:2128–2135
    [Google Scholar]
  8. Cox D. L., Baugh C. L. 1976; Carboxylation of phosphoenolpyruvate by extracts of Neisseria gonorrhoeae. . Journal of Bacteriology 129:202–206
    [Google Scholar]
  9. Dixon G. H., Kornberg H. L. 1962; Malate synthetase from baker’s yeast. Methods in Enzymology 5:633–637
    [Google Scholar]
  10. Ernst S. M., Budde R.J.A., Chollet R. 1986; Partial purification and characterization of pyruvate orthophosphate dikinase from Rhodospirillum rubrum. . Journal of Bacteriology 165:483–488
    [Google Scholar]
  11. Friis N. F. 1975; Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare: a survey. Nordisk Veterinaermedicin 27:337–339
    [Google Scholar]
  12. George H. A., Smibert R. M. 1982; Fumarate reduction and product formation by the Reiter strain of Treponema phagedenis. . Journal of Bacteriology 152:1049–1059
    [Google Scholar]
  13. Gill J. W. 1960; Culture and metabolism of Mycoplasma gallisepticum. . Journal of Bacteriology 83:213–218
    [Google Scholar]
  14. Goldberg D. M., Ellis G. 1983; Isocitrate dehydrogenase. In Methods in Enzymatic Analysis, 3rd edn. 3 pp 183–188 Bergmeyer H. U. Edited by New York: Academic Press;
    [Google Scholar]
  15. Holdsworth E. S., Bruck K. 1977; Enzymes concerned with oc-carboxylation in marine phytoplankton. Achives of Biochemistry and Biophysics 182:87–94
    [Google Scholar]
  16. Hollaender R., Wolf G., Mannheim W. 1977; Lipoquinones of some bacteria and mycoplasmas, with considerations on their functional significance. Antonie van Leeuwenhoek 43:177–185
    [Google Scholar]
  17. Holmes B. E., Pirie A. 1932; Growth and metabolism of the bovine pleuropneumonia virus. British Journal of Experimental Pathology 13:364–370
    [Google Scholar]
  18. Hsu R. Y., Lardy H. A. 1969; Malic enzyme. Methods in Enzymology 13:230–235
    [Google Scholar]
  19. Klomkes M., Altdorf R., Ohlenbusch H.-D. 1985; Purification and properties of an FAD- containing NADH oxidase from Mycoplasma capri- colum. . Hoppe-Seyler’s Biological Chemistry 366:963–969
    [Google Scholar]
  20. Kornberg A. 1955; Lactic dehydrogenase of muscle. Methods in Enzymology 1:441–443
    [Google Scholar]
  21. Lanham S. M., Lemcke R. M., Scott C. M., Grendon J. M. 1980; Isoenzymes in two species of Acholeplasma. . Journal of General Microbiology 117:19–31
    [Google Scholar]
  22. Leece J. G., Morton H. E. 1954; Metabolic studies on three strains of pleuropneumonia-like organisms isolated from man. Journal of Bacteriology 67:62–68
    [Google Scholar]
  23. Lipman R. P., Clyde W. A., Denny F. W. 1969; Characterization of virulent, attenuated, and aviru- lent Mycoplasma pneumoniae strains. Journal of Bacteriology 100:1038–1043
    [Google Scholar]
  24. Lynn R. J. 1960; Oxidative metabolism of pleuropneumonia-like organisms. Annals of the New York Academy of Sciences 79:538–542
    [Google Scholar]
  25. Mcgarrity G. J., Constantopoulos G., Barranger J. A. 1984; Effect of mycoplasma infection on pyruvate dehydrogenase complex activity of normal and pyruvate dehydrogenase complex- deficient fibroblasts. Experimental Cell Research 151:557–562
    [Google Scholar]
  26. Neimark H. C., Pickett M. J. 1960; Products of glucose metabolism by pleuropneumonia-like organisms. Annals of the New York Academy of Sciences 79:531–537
    [Google Scholar]
  27. Pollack J. D. 1975; Localization of reduced nicotinamide adenine dinucleotide oxidase activity in Acholeplasma and Mycoplasma species. International Journal of Systematic Bacteriology 25:108–113
    [Google Scholar]
  28. Pollack J. D. 1983; Localization of enzymes in mycoplasma: preparatory steps. Methods of Mycoplasmology 1:327–332
    [Google Scholar]
  29. Pollack J. D., Williams M. V. 1986; PPr dependent phosphofructotransferase (phosphofruc- tokinase) activity in the Mollicute (Mycoplasma) Acholeplasma laidlawii. . Journal of Bacteriology 165:53–60
    [Google Scholar]
  30. Pollack J. D., Somerson N. L., Senterfit L. B. 1970; Isolation, characterization, and immunogenicity of Mycoplasma pneumoniae membranes. Infection and Immunity 2:326–339
    [Google Scholar]
  31. Pollack J. D., Merola A. J., Platz J., Booth R. L. II 1981; Respiration-associated components of Mollicutes. Journal of Bacteriology 146:907–913
    [Google Scholar]
  32. Razin S. 1963; Nutritional requirements and metabolism of Mycoplasma laidlawii. . Journal of General Microbiology 30:141–154
    [Google Scholar]
  33. Reddy T.L.P., Weber M. M. 1986; Solubilization, purification and characterization of succinate dehydrogenase from membranes of Mycobacterium phlei. . Journal of Bacteriology 167:1–6
    [Google Scholar]
  34. Reed J. R., Mukherjee B. B. 1963; α-Ketoglutarate dehydrogenase from E. coli. . Methods in Enzymology 13:55–61
    [Google Scholar]
  35. Reinards R., Kubicki J., Ohlenbusch H. D. 1981; Purification and characterization of NADH oxidase from membranes of Acholeplasma laidlawii, a copper-containing iron-sulfur flavoprotein. European Journal of Biochemistry 120:329–337
    [Google Scholar]
  36. Rej R., Horder J. 1983; Aspartate aminotransferase (glutamate-oxaloacetate transaminase). In Methods in Enzymatic Analysis, 3rd edn. 3 pp 416–425 Bergmeyer H. U. Edited by New York: Academic Press;
    [Google Scholar]
  37. Rodwell A. W. 1960; Nutrition and metabolism of Mycoplasma mycoides subsp. mycoides. . Annals of the New York Academy of Sciences 79:499–507
    [Google Scholar]
  38. Rodwell A. W., Rodwell E. S. 1954; The breakdown of carbohydrates by Asterococcus mycoides, the organisms of bovine pleuropneumonia. Australian Journal of Biological Science 7:18–30
    [Google Scholar]
  39. Salih M. M., Simonsen V., Ernø H. 1983; Electrophoretic analysis of isoenzymes of Acholeplasma species. International Journal of Systematic Bacteriology 33:16–172
    [Google Scholar]
  40. Slavik N. F., Switzer W. P. 1972; Development of a microtitration complement fixation test for the diagnosis of Mycoplasma suipneumoniae. . Iowa State Journal for Research 47:117–128
    [Google Scholar]
  41. Smith P. E. 1971 The Biology of Mycoplasmas New York: Academic Press;
    [Google Scholar]
  42. Smith T. E. 1968; Escherichia coli phosphoenolpyru- vate carboxylase: competitive regulation by acetyl coenzyme A and aspartate. Archives of Biochemistry and Biophysics 128:611–622
    [Google Scholar]
  43. Srere P. A. 1969; Citrate synthase. Methods in Enzymology 13:3–11
    [Google Scholar]
  44. Stitt M. 1983a; Citrate synthase (condensing enzyme). In Methods in Enzymatic Analysis, 3rd edn. 4 pp 353–358 Bergmeyer H. U. Edited by New York: Academic Press;
    [Google Scholar]
  45. Stitt M. 1983b; Fumarase. In Methods in Enzymatic Analysis, 3rd edn. 3 pp 359–362 Bergmeyer H. U. Edited by New York: Academic Press;
    [Google Scholar]
  46. Tourtellotte M. E., Jacobs R. E. 1960; Physiological and serologic comparisons of PPLO from various sources. Annals of the New York Academy of Sciences 79:521–530
    [Google Scholar]
  47. Tryon V. V., Pollack J. D. 1984; Purine metabolism in Acholeplasma laidlawii B: novel PP1- dependent nucleoside kinase activity. Journal of Bacteriology 159:265–270
    [Google Scholar]
  48. Tryon V. V., Pollack J. D. 1985; Distinctions in Mollicutes purine metabolism: pyrophosphate-dependent nucleoside kinase and dependence on guanylate salvage. International Journal of Systematic Bacteriology 35:497–501
    [Google Scholar]
  49. Vandemark P. J., Smith P. F. 1964a; Respiratory pathways in the mycoplasma. II. Pathway of electron transport during oxidation of reduced nicotinamide adenine dinucleotide by Mycoplasma hominis. . Journal of Bacteriology 88:12–129
    [Google Scholar]
  50. Vandemark P. J., Smith P. F. 1964b; Evidence for a tricarboxylic acid cycle in Mycoplasma hominis. . Journal of Bacteriology 88:373–377
    [Google Scholar]
  51. Vandemark P. J., Smith P. F. 1965; Nature of butyrate oxidation by Mycoplasma hominis. . Journal of Bacteriology 88:1602–1607
    [Google Scholar]
  52. Williams V. R., Lartigue D. J. 1969; Aspartase. Methods in Enzymology 13:354–361
    [Google Scholar]
  53. Wood H. G., O’Brien W. E., Michaels G. 1977; Properties of carboxytransphosphorylase; pyruvate dikinase; pyrophosphate phosphofructokinase and pyrophosphateacetate kinase and their roles in the metabolism of inorganic phosphate. Advanced Enzymology and Related Areas of Molecular Biology 45:85–155
    [Google Scholar]
  54. Yoshida A. 1969; L-Malate dehydrogenase from Bacillus subtilis. . Methods in Enzymology 13:141–145
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-3-791
Loading
/content/journal/micro/10.1099/00221287-134-3-791
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error