Construction of a Shuttle Vector for Inducible Gene Expression in and Free

Abstract

The construction of a shuttle vector for inducible gene expression allowing fast and easy cloning in and subsequent transformation of is presented. The expression is based on the regulation of the promoter by the Lac repressor which was assayed with the gene from as a marker gene. The lacl gene, transcribed by the strong promoter, allowed full repression of the weak promoter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-3-605
1988-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/3/mic-134-3-605.html?itemId=/content/journal/micro/10.1099/00221287-134-3-605&mimeType=html&fmt=ahah

References

  1. Bagdasarian M. M., Amann E., Lurz R., Rückert B., Bagdasarian M. 1983; Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host- range, controlled-expression vectors. Gene 26:273–282
    [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in E. coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  3. Brosius J., Holy A. 1984; Regulation of riboso-mal RNA promoters with a synthetic lac operator. Proceedings of the National Academy of Sciences of the United States of America 81:6929–6933
    [Google Scholar]
  4. Brosius J., Cate R. L., Perlmutter A. P. 1982; Precise location of two promoters for the β-lactamase gene of pBR322. Journal of Biological Chemistry 257:9205–9210
    [Google Scholar]
  5. Cohen N. S., Chang A. C. Y., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria: genetic transformations of Escherichia coli by R-factor DNA. Proceedings of the National Academy of Sciences of the United States of America 69:2110–2114
    [Google Scholar]
  6. Deuschle U., Gentz R., Bujard H. 1986; lac repressor blocks transcribing RNA polymerase and terminates transcription. Proceedings of the National Academy of Sciences of the United States of America 83:4134–4137
    [Google Scholar]
  7. Dhaese D., Hussey C., Van Montagu M. 1984; Thermoinducible gene expression in Bacillus subtilis using transcriptional regulatory elements from temperate phage ɸ105. Gene 32:181–194
    [Google Scholar]
  8. Lacey R. W., Chopra I. 1974; Genetic studies of a multiresistant strain of Staphylococcus aureus. Journal of Medical Microbiology 124:597–601
    [Google Scholar]
  9. Luria J., Burrous J. W. 1957; Hybridization between E. coli and Shigella. Journal of Bacteriology 74:461–476
    [Google Scholar]
  10. Moran C. P., Lang N., Legrice S. F. J., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequence that signals the initiation of transcription and translation in Bacillus subtilis. Molecular and General Genetics 186:339–346
    [Google Scholar]
  11. Osburne M. S., Craig R. J. 1986; Activity of two strong promoters cloned into Bacillus subtilis. Journal of General Microbiology 132:565–568
    [Google Scholar]
  12. Osburne M. S., Craig R. J., Rothstein D. M. 1985; Thermoinducible transcription system for Bacillus subtilis that utilizes control elements from temperate phage ɸ105. Journal of Bacteriology 163:1101–1108
    [Google Scholar]
  13. Ostroff G. R., Péne J. J. 1983; Molecular cloning with bifunctional plasmid vectors in Bacillus subtilis: isolation of a spontaneous mutant of B.subtilis with enhanced transformability for E. coli-propagated chimeric plasmid DNA. Journal of Bacteriology 156:934–936
    [Google Scholar]
  14. Peschke U., Beuck V., Bujard H., Gentz R., Legrice S. 1985; Efficient utilization of Escherichia coli transcriptional signals in Bacillus subtilis. Journal of Molecular Biology 186:547–555
    [Google Scholar]
  15. Rottländer E., Trautner T. A. 1970; Genetic and transfection studies with Bacillus subtilis phage SP50. 1. Phage mutants with restricted growth on B. subtilis strain 168. Molecular and General Genetics 108:47–60
    [Google Scholar]
  16. Sarachu A. N., Alonso J. C., Grau O. 1980; Novobiocin blocks the shut off of SPOl early transcription. Virology 105:13–18
    [Google Scholar]
  17. Thomas P. S. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences of the United States of America 77:5201–5205
    [Google Scholar]
  18. Tomizawa J., Som T. 1984; Control of ColEl plasmid replication: enhancement of binding of RNA I to the primer transcript by the Rom protein. Cell 38:871–878
    [Google Scholar]
  19. Williams D. M., Duvall E. J., Lovett P. S. 1981; Cloning restriction fragments that promote expression of a gene in Bacillus subtilis. Journal of Bacteriology 146:1162–1165
    [Google Scholar]
  20. Yansura D. G., Henner D. 1983; Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 81:439–443
    [Google Scholar]
  21. Zukowski M. M., Gaffney D. F., Speck D., Kauffmann M., Findell A., Wisecup A., Lecocq J.-P. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proceedings of the National Academy of Sciences of the United States of America 80:1101–1105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-3-605
Loading
/content/journal/micro/10.1099/00221287-134-3-605
Loading

Data & Media loading...

Most cited Most Cited RSS feed