1887

Abstract

The subcellular location of LamB-LacZ hybrid proteins in the K12 strains pop3234 and pop3299 was investigated by immunocytochemical detection and protease-accessibility experiments. Induction of the synthesis of the hybrid proteins resulted in the appearance of membrane-like structures within the cytoplasm of the cells. Labelling of ultrathin cryosections of the cells with anti--galactosidase or anti-LamB protein serum and protein-A-gold complexes revealed that the hybrid proteins were associated with these membrane-like structures or accumulated within the cytoplasm. Protease-accessibility experiments confirmed this localization. Moreover, when low quantities of hybrid proteins were produced, i.e. in uninduced pop3234 cells or in induced pop3299 cells, the hybrid proteins were accessible to trypsin from the periplasmic side of the inner membrane, leaving protected fragments with an apparent of 83000. Apparently, these hybrid proteins are partly translocated through the inner membrane, resulting in membrane-spanning forms of the proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-3-599
1988-03-01
2021-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/3/mic-134-3-599.html?itemId=/content/journal/micro/10.1099/00221287-134-3-599&mimeType=html&fmt=ahah

References

  1. Emr S. D., Hall M. N., Silhavy T. J. 1980; A mechanism of protein localization: the signal hypothesis and bacteria. Journal of Cell Biology 86:701–711
    [Google Scholar]
  2. Hall M. N., Schwartz M., Silhavy T. J. 1982; Sequence information within the lamB gene is required for proper routing of the bacteriophage λ receptor protein to the outer membrane of Escherichia coli K-12. Journal of Molecular Biology 156:93–112
    [Google Scholar]
  3. Lugtenberg B., Meijers J., Peters R., Van Der Hoek P., Van Alphen L. 1975; Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K12 into four bands. FEBS Letters 58:254–258
    [Google Scholar]
  4. Lugtenberg B., Peters R., Bernheimer H., Berendsen W. 1976; Influence of cultural conditions and mutations on the composition of the outer membrane proteins of Escherichia coli. Molecular and General Genetics 147:251–262
    [Google Scholar]
  5. Oliver D. B., Beckwith J. 1981; Escherichia coli mutant pleiotropically defective in the export of secreted proteins. Cell 25:765–772
    [Google Scholar]
  6. Oliver D. B., Beckwith J. 1982; Regulation of a membrane component required for protein secretion in Escherichia coli. Cell 30:311–319
    [Google Scholar]
  7. Poolman J. T., Zanen H. C. 1980; Detection of antibody activity in human sera against meningococcal cell wall antigens using a gel-immuno-radioassay (GIRA). FEMS Microbiology tetters 7:293–296
    [Google Scholar]
  8. Schwartz M. 1967; Sur l’existence chez Escherichia coli K12 d’une régulation commune à la biosynthèse de récepteurs du bactériophage λ et au métabolisme du maltose. Annales de l’Institut Pasteur 113:685–704
    [Google Scholar]
  9. Silhavy T. J., Shuman H. A., Beckwith J. R., Schwartz M. 1977; Use of gene fusions to study outer membrane protein localization in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 74:5411–5415
    [Google Scholar]
  10. Tommassen J., De Kroon T. 1987; Subcellular localization of a PhoE-LacZ fusion protein in Escherichia coli by protease accessibility experiments reveals an inner membrane spanning form of the protein. FEBS tetters 221:226–230
    [Google Scholar]
  11. Tommassen J., Lugtenberg B. 1984; Amino terminus of outer membrane PhoE protein: localization by use of a bla-phoE hybrid gene. Journal of Bacteriology 157:327–329
    [Google Scholar]
  12. Tommassen J., Leunissen J., Van Damme-Jongsten M., Overduin P. 1985; Failure of Escherichia coli K-12 to transport PhoE-LacZ hybrid proteins out of the cytoplasm. EMBO Journal 4:1041–1047
    [Google Scholar]
  13. Van Bergen En Henegouwen P. M. P., Leunissen J. L. M. 1986; Controlled growth of colloidal gold particles and implications for labelling efficiency. Histochemistry 85:81–87
    [Google Scholar]
  14. Von Meijenburg K., Jørgensen B. B., Van Deurs B. 1984; Physiological and morphological effects of overproduction of membrane-bound ATP synthase in Escherichia coli K-12. EMBO Journal 3:1791–1797
    [Google Scholar]
  15. Weiner J. H., Lemire B. D., Elmes M. L., Bradley R. D., Scraba D. G. 1984; Overproduction of fumarate reductase in Escherichia coli induces a novel intracellular lipid-protein organelle. Journal of Bacteriology 158:590–596
    [Google Scholar]
  16. Witholt B., Boekhout M., Brock M., Klngma J., Van Heerikhuizen H., De Leij L. 1976; An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Analytical Biochemistry 74:160–170
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-3-599
Loading
/content/journal/micro/10.1099/00221287-134-3-599
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error