1887

Abstract

A 7·8 kb plasmid (pQM17) encoding mercury resistance was isolated from two epilithic strains of The plasmid had a broad host range when mobilized by RP1, transferring into , , , , and sp. with frequencies ranging from 5·3 × 10 to 4·6 × 10 per recipient. The plasmid could be transferred into BD413 using intact cells of donor and recipient bacteria (i.e. natural transformation) and there was a broad temperature optimum (14–37 °C) for transformation. Transformation was as efficient in liquid matings as on plates but there was no effect of pH in the range 5·6–7·9. Maximum transformation frequencies were obtained after 24 h on agar plates containing 3·5–10 g C1 with donor to recipient ratios ranging from 6 to 415.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-11-2933
1988-11-01
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/11/mic-134-11-2933.html?itemId=/content/journal/micro/10.1099/00221287-134-11-2933&mimeType=html&fmt=ahah

References

  1. Aardema B. W., Lorenz M. G., Krumbein W. E. 1983; Protection of sediment-adsorbed transforming DNA against enzymatic inactivation. Applied and Environmental Microbiology 46:417–420
    [Google Scholar]
  2. Ahlquist E. F., Fewson C. A., Ritchie D. A., Podmore J., Rowell V. 1980; Competence for genetic transformation in Acinetobacter calcoaceticus NCIB 8250. FEMS Microbiology Letters 7:107–109
    [Google Scholar]
  3. Albritton W. L., Setlow J. K., Slaney L. 1982; Transfer of Haemophilus influenzae chromosomal genes by cell to cell contact. Journal of Bacteriology 152:1066–1070
    [Google Scholar]
  4. Bachmann B. J. 1987; Derivations and genotypes of some mutant derivatives of E. coli K12. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 1190–1219 Neidhardt F. C. Edited by Washington: American Society for Microbiology;
    [Google Scholar]
  5. Bagdasarian M., Lurz R., Ruckert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSFlOlO-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247
    [Google Scholar]
  6. Bale M. J., Fry J. C., Day M. J. 1987; Plasmid transfer between strains of Pseudomonas aeruginosa on membrane filters attached to river stones. Journal of General Microbiology 133:3099–3107
    [Google Scholar]
  7. Bale M. J., Fry J. C., Day M. J. 1988; Transfer and occurrence of large mercury resistance plasmids in river epilithon. Applied and Environmental Microbiology 54: (in the Press)
    [Google Scholar]
  8. Bauman P. 1968; Isolation of Acinetobacter from soil and water. Journal of Bacteriology 96:39–42
    [Google Scholar]
  9. Berry D., Kropinski A. M. 1986; Effect of lipopolysaccharide mutations and temperature on plasmid transformation efficiency in Pseudomonas aeruginosa. Canadian Journal of Microbiology 32:436–438
    [Google Scholar]
  10. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  11. Burton N. F., Day M. J., Bull A. T. 1982; Distribution of bacterial plasmids in clean and polluted sites in a South Wales river. Applied and Environmental Microbiology 44:1026–1029
    [Google Scholar]
  12. Carlson C. A., Pierson L. S., Rosen J. J., Ingraham J. L. 1983; Pseudomonas stutzeri and related species undergo natural transformation. Journal of Bacteriology 153:93–99
    [Google Scholar]
  13. Cruze J. A., Singer J. T., Finnerty W. R. 1979; Conditions for quantitative transformation in Acinetobacter calcoaceticus . Current Microbiology 3:129–132
    [Google Scholar]
  14. Franklin F. C. H. 1985; Broad host range cloning vectors for Gram negative bacteria. In DNA Cloning 1 A Practical Approach,pp. 165–184 Glover M. Edited by Oxford: IRL Press;
    [Google Scholar]
  15. Gauthier M. J., Cauvin F., Breittmayer J. P. 1985; Influence of salts and temperature on the transfer of mercury resistance from a marine pseudomonad to Escherichia coli . Applied and Environmental Microbiology 50:38–40
    [Google Scholar]
  16. Graham B. J., Istock C. A. 1978; Genetic exchange in Bacillus subtilis in soil. Molecular and General Genetics 166:287–290
    [Google Scholar]
  17. Gross D. C., Vidaver A. K. 1981; Transformation of Pseudomonas syringae with non-conjugative R-plasmids. Canadian Journal of Microbiology 27:759–765
    [Google Scholar]
  18. Hanahan D. 1985 Techniques for transformation of E.coli. In DNA Cloning 1 A Practical Approach pp. 109–135 Grover D. M. Edited by Oxfrord: IRL Press;
    [Google Scholar]
  19. Hull C. H., Nib N. H. 1981 SPSS Update: New Procedures and Facilities for Release 7.9. New York: McGraw-Hill;
    [Google Scholar]
  20. Jacoby G. A. 1974; Properties of plasmids determining gentamicin resistance by acetylation in Pseudomonas aeruginosa . Antimicrobial Agents and Chemotherapy 6:239–252
    [Google Scholar]
  21. Juni E. 1972; Interspecies transformation of Acinetobacter'. genetic evidence for a ubiquitous genus. Journal of Bacteriology 112:917–931
    [Google Scholar]
  22. Juni E. 1978; Genetics and physiology of Acinetobacter . Annual Review of Microbiology 32:349–371
    [Google Scholar]
  23. Kado C. I., Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. Journal of Bacteriology 145:1365–1373
    [Google Scholar]
  24. Kelly W. J., Reanney D. C. 1984; Mercury resistance among soil bacteria: ecology and transferability of genes encoding resistance. Soil Biology and Biochemistry 16:1–8
    [Google Scholar]
  25. Khesin R. B., Karasyova E. V. 1984; Mercury resistant plasmids in bacteria isolated from a mercury and antimony deposit area. Molecular and General Genetics 197:280–285
    [Google Scholar]
  26. Lacroix S. J., Cabelli V. J. 1982; Membrane filter method for enumeration of Acinetobacter calcoaceticus from environmental waters. Applied and Environmental Microbiology 43:90–96
    [Google Scholar]
  27. Lock M. A. 1981; River epilithon: a light and organic energy transducer. In Perspectives in Running Water Ecology pp. 3–40 Lock M. A., Williams D. D. Edited by New York: Plenum Press;
    [Google Scholar]
  28. Lomovskaya O. L., Mindlin S. Z., Gorlenko ZH. M., Khesin R. B. 1986; A non-conjugative mobilisable broad host range plasmid of Acinetobacter sp. that determines HgCl2 resistance. Molecular and General Genetics 202:286–290
    [Google Scholar]
  29. Lorenz M. G., Aardema B. A., Wackernagel W. 1988; Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. Journal of General Microbiology 134:107–112
    [Google Scholar]
  30. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring HarborLaboratory;
    [Google Scholar]
  31. Mawle G. W., Winstone A., Brooker M. P. 1985; Salmon and sea trout in the Taff - past, present and future. Nature in Wales New Series 4: (102) 36–45
    [Google Scholar]
  32. Morrison D. A., Mannarelli B., Vijayakumar M. N. 1982; Competence for transformation in Streptococcus pneumoniae: an inducible high-capacity system for genetic exchange. In Microbiology - 1982 pp. 136–138 Schlessinger D. Edited by Washington: American Society for Microbiology;
    [Google Scholar]
  33. Olson B. H., Barkay T., Colwell R. R. 1979; Role of plasmids in mercury transformation by bacteria isolated from the aquatic environment. Applied and Environmenal Microbiology 38:478–485
    [Google Scholar]
  34. Paul J. H., Myers B. 1982; Fluorometric determination of DNA in aquatic microorganisms by use of Hoechst 33258. Applied and Environmental Microbiology 43:1393–1399
    [Google Scholar]
  35. Reanney D. C., Gowland P. C., Slater J. H. 1983; Genetic interactions among microbial communities. In Microbes in Their Natural Environments pp. 379–421 Slater J. H., Whittenbury R., Wimpenny J. W.T. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  36. Rochelle P. A., Fry J. C., Day M. J., Bale M. J. 1986; . An accurate method for estimating sizes of small and large plasmids and DNA fragments by gel electrophoresis. Journal of General Microbiology 132:53–59
    [Google Scholar]
  37. Rochelle P. A., Fry J. C., Day M. J. 1989; Factors affecting conjugal transfer of plasmids encoding mercury resistance from pure cultures and mixed natural suspensions of epilithic bacteria. Journal of General Microbiology 135: (in the Press)
    [Google Scholar]
  38. Singer J. T., Van Tuijl J. T., Finnerty W. R. 1986; Transformation and mobilisation of cloning vectors in Acinetobacter spp . Journal of Bacteriology 165:301–303
    [Google Scholar]
  39. Sokal R. R., Rohlf F. J. 1981 Biometry, 2nd edn.. San Francisco: Freeman;
    [Google Scholar]
  40. Stewart G. J., Carlson C. A., Ingraham J. L. 1983; Evidence for an active role of donor cells in natural transformation of Pseudomonas stutzeri . Journal of Bacteriology 156:30–35
    [Google Scholar]
  41. Toranzo A. E., Combarro P., Lemos M. L., Borja J. L. 1984; Plasmid coding for transferable drug resistance in bacteria isolated from cultured Rainbow trout. Applied and Environmental Microbiology 48:872–877
    [Google Scholar]
  42. Torsvik V. L., Groksoyr J. 1978; Determination of bacterial DNA in soil. Soil Biology and Biochemistry 10:7–12
    [Google Scholar]
  43. Vakeria D., Fewson C. A., Vivian A. 1985; Gene transfer in Acinetobacter calcoaceticus NCIB 8250. FEMS Microbiology Letters 26:141–145
    [Google Scholar]
/content/journal/micro/10.1099/00221287-134-11-2933
Loading
/content/journal/micro/10.1099/00221287-134-11-2933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error