Chemotaxis of biovar towards Flavonoid Inducers of the Symbiotic Nodulation Genes Free

Abstract

Chemotaxis of biovar RP8002 towards a range of carbohydrates, phenolic compounds and flavonoids was assayed. Xylose (peak response 10 ), sucrose (peak response 10 ) and raffinose (peak response 10 ) were strong chemoattractants amongst the carbohydrates, whilst glucose, fructose, galactose and maltose produced little or no detectable response. Of the monocyclic phenolic compounds, vanillyl alcohol, -hydroxybenzoic acid (both peak responses 10 ) and 3,4-dihydroxybenzoic acid (peak response 10 ) all evoked strong chemotactic responses. Amongst the -inducing flavonoids, apigenin and luteolin were both strong chemoattractants (peaks at 10 ) while naringenin produced a very low response. Competition experiments suggest that apigenin and luteolin are recognized by a common receptor, but that there exists a separate receptor for luteolin alone. The inhibitors of -induction, umbelliferone and acetosyringone, both produced strong chemotactic responses, with peaks at 10 and 10 respectively. This evidence is indicative of a role for chemotaxis towards -inducing flavonoids in the initiation of root nodule formation by rhizobia, and also suggests that chemotaxis may influence the host range of the interaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-10-2741
1988-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/10/mic-134-10-2741.html?itemId=/content/journal/micro/10.1099/00221287-134-10-2741&mimeType=html&fmt=ahah

References

  1. Adler J. 1973; A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli . Journal of General Microbiology 74:77–91
    [Google Scholar]
  2. Ames P., Bergman K. 1980; Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti . Journal of Bacteriology 148:728–729
    [Google Scholar]
  3. Ashby A. M., Watson M. D., Shaw C. H. 1987; A Ti-plasmid determined function is responsible for chemotaxis towards the plant wound product acetosyringone. FEMS Microbiology Letters 41:189–192
    [Google Scholar]
  4. Ashby A. M., Watson M. D., Loake G. J., Shaw C. H. 1988; Ti-plasmid specified chemotaxis of Agrobacterium tumefaciens C58C1 towards wr-induc- ing phenolics and soluble factors from mono- cotyledonous and dicotyledonous plants. Journal of Bacteriology (in the Press)
    [Google Scholar]
  5. Caetano-Anolles G., Crist-Estes D. K., Bauer W. D. 1988; Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodula- tion genes. Journal of Bacteriology (in the Press)
    [Google Scholar]
  6. Currier W. W., Strobel G. A. 1976; Chemotaxis of Rhizobium spp. to plant root exudates. Plant Physiology 57:820–823
    [Google Scholar]
  7. Currier W. W., Strobel G. A. 1977; Chemotaxis of Rhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots. Science 196:434–436
    [Google Scholar]
  8. Djordjevic M. A., Redmond J. A., Batley M., Rolfe B. G. 1987; Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii . EMBO Journal 6:1173–1179
    [Google Scholar]
  9. Firmin J. L., Wilson K. E., Rossen L., Johnston A. W. B. 1986; Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature; London: 32490–92
    [Google Scholar]
  10. Gaworzewska E. T., Carlile M. J. 1982; Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants. Journal of General Microbiology 128:1179–1188
    [Google Scholar]
  11. Gitte R. R., Rai P. V., Patil R. B. 1978; Chemotaxis of Rhizobium spp. towards root exudate of Cicer arietinum L. Plant and Soil 50:553–566
    [Google Scholar]
  12. Gulash M., Ames P., Larosiliere R. C., Bergman K. 1984; Rhizobia are attracted to localised sites on legume roots. Applied and Environmental Microbiology 48:149–152
    [Google Scholar]
  13. Götz R., Schmitt R. 1977; Rhizobium meliloti swims by unidirectional, intermittent rotation of right-handed flagellar helices. Journal of Bacteriology 169:3146–3150
    [Google Scholar]
  14. Götz R., Limmer N., Ober K., Schmitt R. 1982; Motility and chemotaxis in two strains of Rhizobium with complex flagella. Journal of General Microbiology 128:789–798
    [Google Scholar]
  15. Horvath B., Bachem C. W. B., Schell J., Kondorosi A. 1987; Host-specific regulation of nodulating genes in Rhizobium is mediated by a plant signal, interacting with the nodD gene product. EMBO Journal 6:841–848
    [Google Scholar]
  16. Kosslak R. M., Bookland R., Barkei J., Paaren H. E., Appelbaum E. R. 1987; Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max . Proceedings of the National Academy of Sciences of the United States of America 84:7428–7432
    [Google Scholar]
  17. Lichtenstein C. 1986; A bizarre vegetal bestiality. Nature; London: 322:682–683
    [Google Scholar]
  18. Loake G. J., Ashby A. M., Shaw C. H. 1988; Attraction of Agrobacterium tumefaciens C58C1 towards sugars involves a highly sensitive chemotaxis system. Journal of General Microbiology 134:1427–1432
    [Google Scholar]
  19. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Nester E. W., Gordon M. P., Amasino R. M., Yanofsky M. 1984; Crown gall: a molecular and physiological analysis. Annual Review of Plant Physiology 35:387–413
    [Google Scholar]
  21. Okker R. J. H., Spaink H., Hille J., Vanbrussel T. A. N., Lugtenberg B. 1984; Plant inducible promoter of the Agrobacterium tumefaciens Ti-plasmid. Nature; London: 312564–566
    [Google Scholar]
  22. Peters N. K., Frost J. W., Long S. R. 1986; A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980
    [Google Scholar]
  23. Redmond J. W., Batley M., Djordjevic M. A., Innes R. W., Kuempel P. L., Rolfe B. G. 1986; Flavones induce expression of nodulation genes in Rhizobium . Nature; London: 323632–635
    [Google Scholar]
  24. Rogowsky P. M., Close T. J., Chimera J. A., Shaw J. J., Kado C. I. 1987; Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. Journal of Bacteriology 169:5101–5112
    [Google Scholar]
  25. Rossen L., Davis E. O., Johnston A. W. B. 1987; Plant-induced expression of Rhizobium genes involved in host specificity and early stages of nodulation. Trends in Biochemical Sciences 12:430–433
    [Google Scholar]
  26. Shaw C. H., Ashby A. M., Watson M. D. 1986; Plant tumour induction. Nature; London: 324415
    [Google Scholar]
  27. Shaw C. H., Ashby A. M., Brown A., Royal C., Loake G. J., Shaw C. H. 1988; vir A and G are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens towards acetosyringone. Molecular Microbiology 2:413–418
    [Google Scholar]
  28. Stachel S. E., Zambryski P. 1986; vir A and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens . Cell 46:325–333
    [Google Scholar]
  29. Stachel S. E., Messens E., Van Montagu M., Zambryski P. 1985; Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens . Nature; London: 318624–629
    [Google Scholar]
  30. Stachel S. E., Nester E. W., Zambryski P. C. 1986; A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proceedings of the National Academy of Sciences of the United States of America 83:379–383
    [Google Scholar]
  31. WINANS S. C., EBERT P. R., STACHEL S. E., GORDON M. P., NESTER E. W. 1986; A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proceedings of the National Academy of Sciences 83:8278–8282
    [Google Scholar]
  32. Zaat S. A. J., Wijffelman C. A., Spaink H. P., Vanbrussel A. A. N., Okker R. J. H., Lugtenberg B. J. J. 1987; Induction of the nodA promoter of Rhizobium leguminosarum sym plasmid pRLIJI by plant flavanones and flavones. Journal of Bacteriology 169:198–204
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-10-2741
Loading
/content/journal/micro/10.1099/00221287-134-10-2741
Loading

Data & Media loading...

Most cited Most Cited RSS feed