Cellular Fatty Acid Composition of : Effect of Growth Temperature and Salt Concentration Free

Abstract

The cellular fatty acid composition of , a moderately halophilic bacterium, grown at different temperatures and NaCl concentrations is reported. When the temperature was lowered the amounts of monounsaturated C and C fatty acids increased with a corresponding decrease in the amounts of saturated C and C fatty acids. Increasing the salt concentration in the medium resulted in an increase of cyclopropane fatty acids, with a concomitant decrease in the monounsaturated fatty acids, suggesting that cyclopropane synthetase is activated or induced by high levels of salt.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-1-199
1988-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/1/mic-134-1-199.html?itemId=/content/journal/micro/10.1099/00221287-134-1-199&mimeType=html&fmt=ahah

References

  1. Barran L.J., Miller R.W. 1976; Temperature-induced alterations in phospholipids in Fusarium oxysporum f.sp.lycopersici. Canadian Journal of Microbiology 22:557–562
    [Google Scholar]
  2. Brian B.L., Gardner E.W. 1968; A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Applied Microbiology 16:549–552
    [Google Scholar]
  3. Brown C.M., Rose A.H. 1969; Fatty acid composition of Candida utilis as affected by growth temperature and dissolved-oxygen tension. Journal of Bacteriology 99:371–378
    [Google Scholar]
  4. Cronan J.E. JR 1975; Thermal regulation of the membrane lipid composition of Escherichia coli. Journal of Biological Chemistry 250:7074–7077
    [Google Scholar]
  5. Ferrer M.R., Del Moral A., Quesada E., Ramos-Cormenzana A. 1987; Growth rate and some physiological features of Deleya halophila CCM 3662 at different salt concentrations. Annales de l’Institut Pasteur/Microbiologie 138:49–57
    [Google Scholar]
  6. Hanna K., Bengis-Garber C., Kushner D.J., Kogut M., Kates M. 1984; The effect of salt concentration on the phospholipid and fatty acid composition of the moderate halophile Vibrio costicola. Canadian Journal of Microbiology 30:669–675
    [Google Scholar]
  7. Hiramatsu T., Ohno Y., Hara H., Yano I., Masui M. 1980; Effects of NaCl concentration on the envelope components in a moderately halophilic bacterium, Pseudomonas halosaccharolytica. In Saline Environments.Proceedings of the Japanese Conference on Halophilic Microbiology pp. 189–199 Edited by Morishita M., Masui M. Kyoto, Japan: Nakanishi Printing Co.;
    [Google Scholar]
  8. Komaratat P., Kates M. 1975; The lipid composition of a halotolerant species of Staphylococcus epidermis. Biochimica et biophysica acta 398:464–484
    [Google Scholar]
  9. McElhaney R.N. 1976; The biological significance of alterations in the fatty acid composition of microbial membrane lipids in response to changes in environmental temperature. In Extreme Environments: Mechanisms of Microbial Adaptation, pp. 255–281 Edited by Heinrich H. R. New York: Academic Press;
    [Google Scholar]
  10. McGarrity J.T., Armstrong J.B. 1975; The effect of salt on phospholipid fatty acid composition in Escherichia coli K -12. Biochimica et biophysica acta 398:258–264
    [Google Scholar]
  11. McGarrity J.T., Armstrong J.B. 1981; The effect of temperature and other growth conditions on the fatty acid composition of Escherichia coli. Canadian Journal of Microbiology 27:835–840
    [Google Scholar]
  12. Melchior D.L. 1982; Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Current Topics in Membranes and Transport 17:263–316
    [Google Scholar]
  13. Monteoliva-Sanchez M., Ramos-Cormenzana A. 1986; Effect of growth temperature and salt concentration on the fatty acid composition of Flavobacterium halmephilum CCM 2831. FEMS Microbiology Letters 33:51–54
    [Google Scholar]
  14. Monteoliva-Sanchez M., Ramos-Cormenzana A. 1987a; Cellular fatty acid composition of Planococcushalophilus NRCC 14033 as affected by growth temperature and salt concentration. Current Microbiology 15:133–136
    [Google Scholar]
  15. Monteoliva-Sanchez M., Ramos-Cormenzana A. 1987b; Cellular fatty acid composition in moderately halophilic Gram-negative rods. Journal of Applied Bacteriology 62:361–366
    [Google Scholar]
  16. Ohno Y., Yano I., Masui M. 1979; Effect of NaCl concentration and temperature on the phospholipid and fatty acid composition of a moderately halophilic bacterium, Pseudomonas halosaccharolytica. Journal of Biochemistry 85:413–421
    [Google Scholar]
  17. Quesada E., Ventosa A., Rodriquez-Valera F., Megias L., Ramos-Cormenzana A. 1983; Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. Journal of General Microbiology 129:2649–2657
    [Google Scholar]
  18. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. International Journal of Systematic Bacteriology 34:287–292
    [Google Scholar]
  19. Russell N.J. 1984; Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends in Biochemical Sciences 9:108–112
    [Google Scholar]
  20. Russell N.J., Kogut M. 1985; Haloadaptation: salt sensing and cell-envelope changes. Microbiological Sciences 2:345–350
    [Google Scholar]
  21. Saito Y., McElhaney R.N. 1977; Membrane lipid biosynthesis in Acholeplasma laidlawii B: incorporation of exogenous fatty acids into membrane glyco- and phospholipids by growing cells. Journal of Bacteriology 132:485–496
    [Google Scholar]
  22. Sinensky M. 1971; Temperature control of phospholipid biosynthesis in Escherichia coli. Journal of Bacteriology 106:449–455
    [Google Scholar]
  23. Subov N.N. 1931 Oceanographical Tables Moscow, USSR: USSR Oceanographical Institute;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-1-199
Loading
/content/journal/micro/10.1099/00221287-134-1-199
Loading

Data & Media loading...

Most cited Most Cited RSS feed