Purification and Characterization of the Isopenicillin N Synthase of Free

Abstract

The isopenicillin N synthase (cyclase) of (syn. ) has been purified to near homogeneity as judged by SDS-PAGE and isoelectric focusing. This enzyme catalyses the oxidative cyclization of the tripeptide -(-α-aminoadipyl)--cysteinyl--valine to isopenicillin N. The enzyme required DTT, Fe and oxygen and it was greatly stimulated by ascorbic acid. It was strongly inhibited by Co, Zn and Mn. Optimal pH and temperature were 7·0 and 25 °C (with the assay conditions used), respectively. The apparent of isopenicillin N synthase for -(-α-aminoadipyl)--cysteinyl--valine was 0·18 m. The enzyme is a monomer with an of 26500 ± 1000 and a pI of 6.55.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-1-133
1988-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/1/mic-134-1-133.html?itemId=/content/journal/micro/10.1099/00221287-134-1-133&mimeType=html&fmt=ahah

References

  1. Abraham E.P. 1985; Enzymes involved in penicillin and cephalosporin formation. In Regulation of Secondary Metabolite Formation pp. 115–132 Edited by Kleinkauf H., Dohren H. V., Dornauer H., Neseman G. Weinheim: VHS Verlag;
    [Google Scholar]
  2. Baldwin J.E., Abraham E.P., Adlington R.A., Bahadur G.A., Chakravarti B., Domayne-Hayman B.P., Field L.D., Flitsch S.L., Jayatalike G.S., Spakovskis A., Ting El., Turner N.J., White R.L., Usher J.J. 1984; Penicillin biosynthesis: active site mapping with aminoadipoylcysteinylvaline variants. Journal of the Chemical Society1225–1227
    [Google Scholar]
  3. Baldwin J.E., Gagnon J., Ting H. 1985; N-terminal amino acid sequence and some properties of isopenicillin N synthetase from Cephalosporium acremonium. FEBS Letters 188:253–256
    [Google Scholar]
  4. Carr L.G., Skatrud P.L., Scheetz M.E., Queener S.W., Ingolia T.D. 1986; Cloning and expression of the isopenicillin N synthetase from Penicillium chrysogenum. Gene 48:257–266
    [Google Scholar]
  5. Castro J.M., Liras P., Cortés J., Martín J.F. 1985; Regulation of a-aminoadipyl-cysteinylvaline, isopenicillin N synthetase, isopenicillin N isomerase and deacetoxycephalosporin C synthetase by nitrogen sources in Streptomyces lactamdurans. Applied Microbiology and Biotechnology 22:32–40
    [Google Scholar]
  6. Castro J.M., Liras P., Cortés J., Martín J.F. 1986; Conversion of phenylacetyl-cysteinylvaline in vitro into penicillin G by isopenicillin N synthase of S.lactamdurans. FEMS Microbiology Letters 34:349–353
    [Google Scholar]
  7. Cortés J., Liras P., Castro J.M., Martín J.F. 1986; Glucose regulation of cephamycin C biosynthesis in Streptomyces lactamdurans is exerted on the formation of α-aminoadipyl-cysteinylvaline and deacetoxycephalosporin C synthase. Journal of General Microbiology 132:1805–1814
    [Google Scholar]
  8. Demain A.L. 1983; Biosynthesis of β-lactam antibiotics. In Antibiotics Containing the β-Lactam Structure pp. 189–228 Edited by Demain A. L., Solomon N. Berlin: Springer Verlag;
    [Google Scholar]
  9. Ginther C.L. 1979; Sporulation and the production of serine proteases and cephamycin C by Streptomyces lactamdurans. Antimicrobial Agents and Chemotherapy 15:522–526
    [Google Scholar]
  10. Hollander I.J., Shen Y.Q., Heim A.L., Demain A.L., Wolfe S. 1984; A pure enzyme catalyzing penicillin biosynthesis. Science 224:610–612
    [Google Scholar]
  11. Jensen S.E., Westlake D.W.S., Wolfe S. 1982; Cyclization of δ-(L-α-aminoadipyl)-l(L-α-aminoadipyl)-l-cysteinyl-d-valine to penicillins by cell-free extracts of Streptomyces clavuligerus. Journal of Antibiotics 35:483–490
    [Google Scholar]
  12. Jensen S.E., Westlake D.W.S., Bowers R.J., Ingold C.F., Jouany M., Lyubechansky L., Wolfe S. 1984; Penicillin formation by cell free extracts of S.clavuligerus.Behaviour of aminoadipyl-modified analogs of the natural peptide precursor δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV). Canadian Journal of Chemistry 62:2712–2720
    [Google Scholar]
  13. Jensen S.E., Leskiw B.K., Vining L.C., Aharonowitz Y., Westlake D.W.S., Wolfe S. 1986; Purification of isopenicillin N synthetase from Streptomyces clavuligerus. Canadian Journal of Microbiology 32:953–958
    [Google Scholar]
  14. Konomi T., Hershen S., Baldwin J.E., Yoshida M., Hunt N., Demain A.L. 1979; Cell free conversion of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine into an antibiotic with the properties of isopenicillin N in Cephalosporium acremonium. Biochemical Journal 184:427–430
    [Google Scholar]
  15. Kupka J., Shen Y.Q., Wolfe S., Demain A.L. 1983; Studies on the ring cyclization and ring expansion enzymes of β-lactam biosynthesis in Cephalosporium acremonium. Canadian Journal of Microbiology 29:488–496
    [Google Scholar]
  16. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  17. Luengo J.M., Alemany M.T., Salto F., Ramos F.R., Lopez-Nieto J.M., Martín J.F. 1986; Direct enzymatic synthesis of penicillin G using cyclases of Penicillium chrysogenum and Acremonium chrysogenum. Biotechnology 4:44–47
    [Google Scholar]
  18. Martín J.F. 1981; Biosynthesis of metabolic products with antimicrobial activities: β-lactam antibiotics. In The Actinomycetes pp. 417–434 Edited by Schaal K. P., Pulverer G. Stuttgart: Gustav Fischer Verlag;
    [Google Scholar]
  19. Martín J.F., Liras P. 1985; Biosynthesis of β-lactam antibiotics: design and construction of overproducing strains. Trends in Biotechnology 3:39–44
    [Google Scholar]
  20. Martín J.F., Lopez-Nieto J.M., Castro J.M., Cortés J., Romero J., Ramos F.R., Cantoral J.M., Alvarez E., Dominguez M.G., Barredo J.L., Liras P. 1986; Enzymes involved in β-lactam biosynthesis controlled by carbon and nitrogen regulation. In Regulation of Secondary Metabolite Formation pp. 41–75 Edited by Kleinkauf H., Dohren H., Dornauer H., Neseman G. Weinheim: VCH Verlag;
    [Google Scholar]
  21. Oakley B.R., Kirsch D.R., Morris N.R. 1980; A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry 105:361–363
    [Google Scholar]
  22. Pang C., Chakravarti B., Adlington R.M., Ting H., White R.L., Jayatilake G.S., Baldwin J.E., Abraham E.P. 1984; Purification of isopenicillin N synthase. Biochemical Journal 222:789–795
    [Google Scholar]
  23. Ramos F.R., Lopez-Nieto J.M., Martín J.F. 1985; Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N. Antimicrobial Agents and Chemotherapy 27:380–387
    [Google Scholar]
  24. Samson S.M., Belagaje R., Blankenship D.T., Chapman J.L.PERRY, Skatrud P.L., Vanfrank R.M., Abraham E.P., Baldwin J.E., Queener S.W., Ingolia T.D. 1985; Isolation, sequence determination and expression in Escheri-chia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature, London 318:191–195
    [Google Scholar]
  25. Samson S.M., Chapman J.L., Belagate R., Queener S.W., Ingolia T.D. 1987; Analysis of the role of cysteine residues in isopenicillin N synthetase activity by site-directed mutagenesis. Proceedings of the National Academy of Sciences of the United States of America 84: (in the Press)
    [Google Scholar]
  26. Stapley E.O., Jackson M., Hernandez S., Mochales S., Mata J.M., Woodruff H.B., Hendlin D. 1972; Cephamycins, a new family of β-lactam antibiotics. I. Production by actinomycetes, including Streptomyces lactamdurans sp. Antimicrobial Agents and Chemotherapy 2:122–131
    [Google Scholar]
  27. Wolfe S., Demain A.L., Jensen S., Westlake D.W.S. 1984; Enzymatic approach to synthesis of unnatural β-lactams. Science 226:1386–1392
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-1-133
Loading
/content/journal/micro/10.1099/00221287-134-1-133
Loading

Data & Media loading...

Most cited Most Cited RSS feed