The Nucleotide Sequence of a Streptomycin 6-Phosphotransferase Gene from a Streptomycin Producer Free

Abstract

The nucleotide sequence of the DNA fragment containing the streptomycin 6-phosphotransferase (streptomycin 6-kinase) gene from the streptomycin-producer strain HUT 6037 was determined. Analysis of the sequence revealed an open reading frame which could encode 325 amino acid residues. A biased codon usage pattern, reflecting the high G + C composition (approximately 74%) of DNA, was observed in the gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-5-1289
1987-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/5/mic-133-5-1289.html?itemId=/content/journal/micro/10.1099/00221287-133-5-1289&mimeType=html&fmt=ahah

References

  1. Ambartsumyan N. S., Mazo A. M. 1980; Elimination of secondary structure effect in gel sequencing of nucleic acids. FEBS Letters 114:265–268
    [Google Scholar]
  2. Beck E., Ludwig G., Auerswald E. A., Reiss B., Schaller H. 1982; Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336
    [Google Scholar]
  3. Benveniste R., Davies J. 1973; Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proceedings of the National Academy of Sciences of the United States of America 70:2276–2280
    [Google Scholar]
  4. Bibb M. J., Bibb M. J., Ward J. M., Cohen S. N. 1985; Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. Molecular and General Genetics 199:26–36
    [Google Scholar]
  5. Cundliffe E. 1978; Mechanism of resistance to thiostrepton in the producing organism Streptomyces azureus. Nature; London: 272792–795
    [Google Scholar]
  6. Cundliffe E., Thompson J. 1981; The mode of action of nosiheptide (multiomycin) and the mechanisms of resistance in the producing organism. Journal of General Microbiology 126:185–192
    [Google Scholar]
  7. Davies J. E., Yagisawa M. 1983; The aminocycli-tol glycosides (aminoglycosides). In Biochemistry and Genetic Regulation of Commercially Important Antibiotics,(Biotechnology Series 2) pp. 329–354 Vining L. C. Edited by Massachusetts: Addison-Wesley;
    [Google Scholar]
  8. Distler J., Piepersberg W. 1985; Cloning and characterization of a gene from Streptomyces griseus coding for a streptomycin-phosphorylating activity. FEMS Microbiology Letters 28:113–117
    [Google Scholar]
  9. Fröhlich K.-Y., Entian K.-D., Mecke D. 1985; The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repression. Gene 36:105–111
    [Google Scholar]
  10. Herbert C. J., Giles I. G., Akhtar M. 1983; The sequence of an antibiotic resistance gene from an antibiotic-producing bacterium; homologies with transposon genes. FEBS Letters 160:67–71
    [Google Scholar]
  11. Hintermann G., Crameri R., Vögtli M., Hütter R. 1984; Streptomycin-sensitivity in Streptomyces glaucescens is due to deletions comprising the structural gene coding for a specific phosphotransferase. Molecular and General Genetics 196:513–520
    [Google Scholar]
  12. Malik V. S., Vining L. C. 1972; Chloramphenicol resistance in a chloramphenicol-producing Streptomyces. Canadian Journal of Microbiology 18:583–590
    [Google Scholar]
  13. Ohnuki T., Imanaka T., Aiba S. 1985; Selfcloning in Streptomyces griseus of an str gene cluster for streptomycin biosynthesis and streptomycin resistance. Journal of Bacteriology 164:85–94
    [Google Scholar]
  14. Oka A., Sugisaki H., Takanami M. 1981; Nucleotide sequence of the kanamycin resistance transposon Tn903. Journal of Molecular Biology 147:217–226
    [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  16. Shine J., Dalgarno J. 1974; The 3′-terminal sequence of E.coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosomal binding sites. Proceedings of the National Academy of Sciences of the United States of America 71:1342–1346
    [Google Scholar]
  17. Shinkawa H., Sugiyama M., Nimi O., Nomi R. 1985; Molecular cloning and expression in Streptomyces lividans of a streptomycin 6-phosphotransferase gene from a streptomycin-producing microorganism. FEBS Letters 181:385–389
    [Google Scholar]
  18. Skinner R. H., Cundliffe E. 1980; Resistance to the antibiotics viomycin and capreomycin in the Streptomyces species which produce them. Journal of General Microbiology 120:95–104
    [Google Scholar]
  19. Sugiyama M., Kobayashi H., Nimi O., Nomi R. 1980; Susceptibility of protein synthesis to streptomycin in streptomycin-producing Streptomyces griseus. FEBS Letters 110:250–252
    [Google Scholar]
  20. Sugiyama M., Mochizuki H., Nimi O., Nomi R. 1981a; Role of streptomycin 6-kinase and ribosomal affinity to streptomycin in self-protection of streptomycin producer. Biotechnology Letters 3:357–362
    [Google Scholar]
  21. Sugiyama M., Mochizuki H., Nimi O., Nomi R. 1981b; Mechanism of protection of protein synthesis against streptomycin inhibition in a producing strain. Journal of Antibiotics 34:1183–1188
    [Google Scholar]
  22. Sugiyama M., Sakamoto M., Mochizuki H., Nimi O., Nomi R. 1983; Purification and characterization of streptomycin 6-kinase, an enzyme implicated in self-protection of a streptomycin-producing micro-organism. Journal of General Microbiology 129:1683–1687
    [Google Scholar]
  23. Thompson C. J., Gray G. S. 1983; Nucleotide sequence of a streptomycete aminoglycoside phosphotransferase gene and its relationship to phosphotransferases encoded by resistance plasmids. Proceedings of the National Academy of Sciences of the United States of America 80:5190–5194
    [Google Scholar]
  24. Thompson J., Cundliffe E., Stark M. J. R. 1982; The mode of action of berninamycin and the mechanism of resistance in the producing organism, Streptomyces bernensis. Journal of General Microbiology 128:857–884
    [Google Scholar]
  25. Tinoco I., Uhlenbeck O. C., Levine M. D. 1971; Estimation of secondary structure in ribonucleic acids. Nature; London: 230362–367
    [Google Scholar]
  26. Toh-E A., Utatsu I. 1985; Physical and functional structure of a yeast plasmid, pSB3, isolated from Zygosaccharomyces bisporus. Nucleic Acids Research 13:4267–4283
    [Google Scholar]
  27. Tohyama H., Shigyo T., Okami Y. 1984; Cloning of streptomycin resistance gene from a streptomycin producing streptomycete. Journal of Antibiotics 37:1736–1737
    [Google Scholar]
  28. Vallins W. J. S., Baumberg S. 1985; Cloning of a DNA fragment from Streptomyces griseuswhich directs streptomycin phosphotransferase activity. Journal of General Microbiology 131:1657–1669
    [Google Scholar]
  29. Yanisch-Perron C., Vieira C., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-5-1289
Loading
/content/journal/micro/10.1099/00221287-133-5-1289
Loading

Data & Media loading...

Most cited Most Cited RSS feed