1887

Abstract

Wild-type grew equally well on NHCl, KNO or glutamine as the only nitrogen source. NADP-dependent glutamate dehydrogenase (EC 1.4.1.4) and glutamine synthetase (GS; EC 6.3.1.2) activities varied with the type and concentration of nitrogen source supplied. Glutamate synthase (GOGAT) activity (EC 1.4.7.1) was detected but it was almost unaffected by the type and concentration of nitrogen source supplied. Ion exchange chromatography showed that the GOGAT activity was due to a distinct enzyme. Azaserine, an inhibitor of the GOGAT reaction, reduced the glutamate pool by 60%, indicating that GOGAT is involved in ammonia assimilation by metabolizing the glutamine formed by GS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-5-1235
1987-05-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/5/mic-133-5-1235.html?itemId=/content/journal/micro/10.1099/00221287-133-5-1235&mimeType=html&fmt=ahah

References

  1. Boland M. J., Benny A. G. 1977; Enymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules. European Journal of Biochemistry 79:355–362
    [Google Scholar]
  2. Burn V. J., Turner P. R., Brown C. M. 1974; Aspects of inorganic nitrogen assimilation in yeasts. Antonie van Leeuwenhoek 40:93–102
    [Google Scholar]
  3. Calderón J., Mora J. 1985; Glutamine cycling in Neurospora crassa. Journal of General Microbiology 131:3237–3242
    [Google Scholar]
  4. CalderÓn J., Morett E., Mora J. 1985; ωAmidase pathway in the degradation of glutamine in Neurospora crassa. Journal of Bacteriology 161:807–809
    [Google Scholar]
  5. Casper P., Bode R., Birnbaum D. 1985; Untersuchungen zur Regulation der Ammonium-assimilation von Candida maltosa. Journal of Basic Microbiology 25:95–101
    [Google Scholar]
  6. Dunn-Coleman N. S., Robey E. A., Tomsett A. B., Garrett R. H. 1981; Glutamate synthase levels in Neurospora crassa mutants altered with respect to nitrogen metabolism. Molecular and Cellular Biology 1:158–164
    [Google Scholar]
  7. Ferguson A. R., Sims A. P. 1974; The regulation of glutamine metabolism in Candida utilis: the role of glutamine in the control of glutamine synthetase. Journal of General Microbiology 80:159–171
    [Google Scholar]
  8. Fraser A. R., Ridley S. M. 1984; Kinetics for glutamine-synthetase inhibition by phosphinothricin and measurement of other enzyme activities in situ in isolated asparagus cells using a freeze-thaw technique. Planta 161:470–474
    [Google Scholar]
  9. Garrett R. H. 1972; The induction of nitrate reductase in Neurospora crassa. Biochimica et biophysica acta 264:481–489
    [Google Scholar]
  10. Genetet I., Martin F., Stewart G. R. 1984; Nitrogen assimilation in mycorrhizas. Ammonium assimilation in the N-starved ectomycorrhizal fungus Cenococcum graniforme. Plant Physiology 76:395–399
    [Google Scholar]
  11. Imada A., Igarasi S., Nakahama K., Isono M. 1973; Asparaginase and glutaminase activities of micro-organisms. Journal of General Microbiology 76:85–99
    [Google Scholar]
  12. Jennison M. W., Newcomb M. D., Henderson R. H. 1955; Physiology of the wood-rotting basidiomycetes. I. Growth and nutrition in submerged culture in synthetic media. Mycologia 47:155–274
    [Google Scholar]
  13. Kinghorn J. R., Pateman J. A. 1976; Mutants of Aspergillus nidulans lacking nicotamide adenine dinucleotide-specific glutamate dehydrogenase. Journal of Bacteriology 125:42–47
    [Google Scholar]
  14. Kinghorn J. R., Pateman J. A. 1977; Nitrogen metabolism. In Genetics and Physiology of Aspergillus pp. 147–202 Smith J. E., Pateman J. A. Edited by London: Academic Press;
    [Google Scholar]
  15. Limon-Lason J., Lara M., Resendiz B., Mora J. 1977; Regulation of glutamine synthetase in fed- batch cultures of Neurospora crassa. Biochemical and Biophysical Research Communications 78:1234–1240
    [Google Scholar]
  16. Martin F., Stewart G. R., Genetet I., Letacon F. 1986; Assimilation of 15NH4 by beech (Fagus sylvatica L.) ectomycorrhizas. New Phytologist 102:85–94
    [Google Scholar]
  17. Miflin B. J., Lea P. J. 1975; Glutamine and asparagine as nitrogen donors for reductant-dependent glutamate synthesis in pea roots. Biochemical Journal 149:403–409
    [Google Scholar]
  18. Miflin B. J., Lea P. J. 1980; Ammonia assimilation. In The Biochemistry of Plants 5 pp. 169–202 Miflin B. J. Edited by London: Academic Press;
    [Google Scholar]
  19. Nicholas D. J. D., Nason A. 1954; Mechanism of action of nitrate reductase from Neurospora. Journal of Biological Chemistry 211:183–197
    [Google Scholar]
  20. Pateman J. A. 1969; Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. Biochemical Journal 115:769–775
    [Google Scholar]
  21. Pateman J. A., Kinghorn J. R. 1975; Nitrogen metabolism. In The Filamentous Fungi 2 pp. 159–237 Smith J. E., Berry D. R. Edited by London: Edward Arnold;
    [Google Scholar]
  22. Robinson J. H., Anthony C., Drabble W. T. 1973; Regulation of the acidic amino-acid permease of Aspergillus nidulans. Journal of General Microbiology 79:65–80
    [Google Scholar]
  23. Roon R. J., Even H. L., Larimore F. R. 1974; Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae. Journal of Bacteriology 118:89–95
    [Google Scholar]
  24. Sims A. P., Folkes B. F. 1964; A kinetic study of the assimilation of 15N-ammonia and the synthesis of amino acids in an exponentially growing culture of Candida utilis. Proceedings of the Royal Society B 159:479–502
    [Google Scholar]
  25. Spector T. 1978; Refinement of the Coomassie blue method of protein quantitation. Analytical Biochemistry 86:142–146
    [Google Scholar]
  26. Stewart G. R., Moore D. 1974; The activities of glutamate dehydrogenases during mycelial growth and sporophore develoμment in Coprinus lagopus (sensu Lewis). Journal of General Microbiology 83:73–81
    [Google Scholar]
  27. Wild A., Manderscheid R. 1984; The effect of phosphinothricin on the assimilation of ammonia in plants. Zeitschrift für Naturforschung 39:500–504
    [Google Scholar]
/content/journal/micro/10.1099/00221287-133-5-1235
Loading
/content/journal/micro/10.1099/00221287-133-5-1235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error