1887

Abstract

SUMMARY: To assess the importance of aerobactin-mediated iron uptake as a bacterial virulence determinant in animal infections, a total of 576 strains of isolated from cattle, chickens, sheep and pigs were screened by colony hybridization to determine the presence of the aerobactin genetic determinants, and by a bioassay to detect aerobactin secretion in iron-limited conditions. Results obtained by the two complementary methods correlated well. The incidence of the aerobactin system was very high among septicaemia isolates, particularly those from cattle and chickens, an observation that strongly suggests an important role for this mechanism of iron assimilation in pathogenesis. On the other hand, the incidence of the aerobactin system among mastitis strains was not significantly higher than among faecal isolates from healthy animals. No classical enterotoxigenic strains tested carried the aerobactin genetic determinants. Although most strains that produced aerobactin were also able to make colicin V, the fact that the two characteristics existed separately in a significant minority of isolates suggested that colicin testing alone could not be reliably used to determine the presence of the aerobactin system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-4-835
1987-04-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/4/mic-133-4-835.html?itemId=/content/journal/micro/10.1099/00221287-133-4-835&mimeType=html&fmt=ahah

References

  1. Bindereif A., Neilands J. B. 1983; Cloning of the aerobactin-mediated iron assimilation system of plasmid ColV. Journal of Bacteriology 153:1111–1113
    [Google Scholar]
  2. Bindereif A., Neilands J. B. 1985; Aerobactin genes in clinical isolates of Escherichia coli. Journal of Bacteriology 161:727–735
    [Google Scholar]
  3. Bindereif A., Braun V., Hantke K. 1982; The cloacin receptor of ColV-bearing Escherichia coli is part of the Fe3+-aerobactin transport system. Journal of Bacteriology 150:1472–1475
    [Google Scholar]
  4. Bishop J. C., Schanbacher F. L., Ferguson L. C., Smith K. L. 1976; In vitro growth inhibition of mastitis-causing coliform bacteria by bovine apolactoferrin. Infection and Immunity 14:911–918
    [Google Scholar]
  5. Braun V. 1981; Escherichia coli cells containing the plasmid ColV produce the iron ionophore aerobactin. FEMS Microbiology Letters 11:225–228
    [Google Scholar]
  6. Braun V., Brazel-Faisst C., Schneider R. 1984; Growth stimulation of Escherichia coli in serum by iron(III)aerobactin. Recycling of aerobactin. FEMS Microbiology Letters 21:99–103
    [Google Scholar]
  7. Brooks H. J., O’Grady F., Mcsherry M. A., Cattell W. R. 1980; Uropathogenic properties of Escherichia coli in recurrent urinary tract infection. Journal of Medical Microbiology 13:57–68
    [Google Scholar]
  8. Bullen J. J., Rogers H. J., Leigh L. 1972; Ironbinding proteins in milk and resistance to Escherichia coli infection in infants. British Medical Journal i:69–75
    [Google Scholar]
  9. Carbonetti N. H., Williams P. H. 1984; A cluster of five genes specifying the aerobactin iron uptake system of plasmid ColV-K30. Infection and Immunity 46:7–12
    [Google Scholar]
  10. Carbonetti N. H., Williams P. H. 1985; Detection of synthesis of the hydroxamate sidero- phore aerobactin by pathogenic isolates of Escherichia coli. In The Virulence of Escherichia coli: Reviews and Methods (Special Publication of the Society for General Microbiology, 13) pp 419–424 Sussman M. Edited by London: Academic Press;
    [Google Scholar]
  11. Carbonetti N. H., Boonchai S., Parry S. H., Väisänen-Rhen V., Korhonen T. K., Williams P. H. 1986; Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infection and Immunity 51:966–968
    [Google Scholar]
  12. Chang A. C. Y., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. Journal of Bacteriology 134:1141–1156
    [Google Scholar]
  13. Colonna B., Nicoletti M., Visca P., Casalino M., Valenti P., Maimone M. 1985; Composite IS/ elements encoding hydroxamate-mediated iron uptake in FI me plasmids from epidemic Salmonella spp. Journal of Bacteriology 162:307–316
    [Google Scholar]
  14. Davies D. L., Falkiner F. R., Hardy K. G. 1981; Colicin V production by clinical isolates of Escherichia coli. Infection and Immunity 31:574–579
    [Google Scholar]
  15. Feinberg A. P., Vogelstein B. 1984; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Addendum. Analytical Biochemistry 137:266–267
    [Google Scholar]
  16. Ford S., Cooper R. A., Williams P. H. 1986; Biochemical genetics of aerobactin biosynthesis in Escherichia coli. FEMS Microbiology Letters 36:281–285
    [Google Scholar]
  17. Gibson F., Magrath D. I. 1969; The isolation and characterisation of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-1. Biochimica et biophysica acta 192:175–184
    [Google Scholar]
  18. Grewal K. K., Warner P. J., Williams P. H. 1982; An inducible outer membrane protein involved in aerobactin-mediated iron transport by ColV strains of Escherichia coli. FEBS Letters 140:27–30
    [Google Scholar]
  19. Grunstein M., Hogness D. S. 1975; Colony hybridization, a method for the isolation of cloned DN As that contain a specific gene. Proceedings of the National Academy of Sciences of the United States of America 72:3961–3965
    [Google Scholar]
  20. Guyer M. 1978; The γδ sequence of F is an insertion sequence. Journal of Molecular Biology 126:347–365
    [Google Scholar]
  21. Harmon R. J., Schanbacher F. L., Ferguson L. C., Smith K. L. 1976; Changes in lactoferrin, immunoglobulin G, bovine serum albumin and lactalbumin during acute experimental and natural coliform mastitis in cows. Infection and Immunity 13:533–542
    [Google Scholar]
  22. Langman L., Young I. G., Frost G. E., Rosenberg H., Gibson F. 1972; Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric-enterochelin esterase. Journal of Bacteriology 112:1142–1149
    [Google Scholar]
  23. Linton A. H., Robinson T. C. 1984; Studies on the association of Escherichia coli with bovine mastitis. British Veterinary Journal 140:368–373
    [Google Scholar]
  24. Montgomerie J. Z., Bindereif A., Neilands J. B., Kalmanson G. M., Guze L. B. 1984; Association of hydroxamate siderophore (aerobactin) with Escherichia coli isolated from patients with bacteremia. Infection and Immunity 46:835–838
    [Google Scholar]
  25. Neilands J. B. 1981; Microbial iron compounds. Annual Review of Biochemistry 50:715–731
    [Google Scholar]
  26. Neilands J. B. 1983; Significance of aerobactin and enterochelin in siderophore-mediated iron assimilation in enteric bacteria. In Microbiology-1983, pp 284–287 Schlessinger D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Perez-Casal J. G., Crosa J. H. 1984; Aerobactin iron uptake sequences in plasmid ColV-K30 are flanked by inverted IS1-like elements and replication regions. Journal of Bacteriology 160:256–265
    [Google Scholar]
  28. Radloff R., Bauer W., Vinograd J. 1967; A dye-buoyant density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proceedings of the National Academy of Sciences of the United States of America 57:1514–1521
    [Google Scholar]
  29. Roberts M., Parthasarathy S., Lan-Po-Tang M. K. L., Williams P. H. 1986; The aerobactin iron uptake system in enteropathogenic Escherichia coli: evidence for an extinct transposon. FEMS Microbiology Letters 37:215–219
    [Google Scholar]
  30. Roberts R. B., Abelson P. H., Cowie D. B., Bolton E. T., Britten R. J. 1963; Studies of biosynthesis in Escherichia coli. Publication no. 607, Carnegie Institute of Washington, Washington, DC
    [Google Scholar]
  31. Rosenberg H., Young I. G. 1974; Iron transport in the enteric bacteria. In Microbial Iron Metabolism, pp 67–82 Neilands J. B. Edited by New York: Academic Press;
    [Google Scholar]
  32. Rothbaum R. M., Mcadams A. J., Gianella R., Partin J. C. 1982; A clinicopathogenic study of enterocyte-adherent Escherichia coli: a cause of protracted diarrhea in infants. Gastroenterology 83:441–454
    [Google Scholar]
  33. Smith H. Williams. 1974; A search for transmissible pathogenic characters in invasive strains of Escherichia coli: the discovery of a plasmid-controlled toxin and a plasmid-controlled lethal character closely associated, or identical with colicin V. Journal of General Microbiology 83:95–111
    [Google Scholar]
  34. Smith H. Williams, Huggins M. B. 1976; Further observations on the association of the ColV plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. Journal of General Microbiology 92:335–350
    [Google Scholar]
  35. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  36. Stuart S. J., Greenwood K. T., Luke R. K. J. 1980; Hydroxamate-mediated transport of iron controlled by ColV plasmids. Journal of Bacteriology 143:35–42
    [Google Scholar]
  37. Svanborg-Edén C., Hagberg L., Hanson L. A., Hull S., Hull R., Jordal Y., Leffler H., Lomberg H., Straube E. 1983; Bacterial adherence - a pathogenic mechanism in urinary tract infections caused by Escherichia coli. Progress in Allergy 33:175–188
    [Google Scholar]
  38. Valvano M. A., Crosa J. H. 1984; Aerobactin iron transport genes commonly encoded by certain ColV plasmids occur in the chromosome of a human invasive strain of Escherichia coli K1. Infection and Immunity 46:159–167
    [Google Scholar]
  39. Valvano M. A., Silver R. P., Crosa J. H. 1986; Occurrence of chromosome or plasmid-mediated aerobactin iron transport systems and hemolysin production among clonal groups of human invasive strains of Escherichia coli K1. Infection and Immunity 52:192–199
    [Google Scholar]
  40. Waalwijk C., Maclaren D. M., De Graaf J. 1983; In vivo function of hemolysin in the nephropathogenicity of Escherichia coli. Infection and Immunity 42:245–249
    [Google Scholar]
  41. Warner P. J., Williams P. H., Bindereif A., Neilands J. B. 1981; ColV plasmid-specified aerobactin synthesis by invasive strains of Escherichia coli. Infection and Immunity 33:540–545
    [Google Scholar]
  42. Williams P. H. 1979; Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infection and Immunity 26:925–932
    [Google Scholar]
  43. Williams P. H., Carbonetti N. H. 1986; Iron, siderophores, and the pursuit of virulence; independence of the aerobactin and enterochelin iron uptake systems in Escherichia coli. Infection and Immunity 51:942–947
    [Google Scholar]
  44. Williams P. H., Roberts M. 1985; Aerobactin- mediated iron uptake: a virulence determinant in enteropathogenic Escherichia coli?. Lancet i:763
    [Google Scholar]
  45. Williams P. H., Warner P. J. 1980; ColV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infection and Immunity 29:411–416
    [Google Scholar]
  46. Wray C., Callow R. J., Sojka W. J. 1984; An examination of Escherichia coli strains isolated from cases of bovine mastitis for possible virulence determinants. Veterinary Microbiology 8:141–145
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-4-835
Loading
/content/journal/micro/10.1099/00221287-133-4-835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error