1887

Abstract

SUMMARY: Immunological analysis of gonococcal pilin (the protein structural subunit of pili) has demonstrated the existence of cross-reacting and type-specific epitopes. The role in adhesion of the domains represented by these epitopes remains unclear. DNA sequencing of a series of pilinexpressing () genes from a number of otherwise isogenic pilus antigenic variants combined with previous immunological analysis of the corresponding encoded pilins has allowed us to correlate certain predicted amino acid sequences with monoclonal antibody reactivities. The putative epitopes for type-specific antibodies lie predominantly in hydrophilic domains that also contain turns. The epitopes for type-specific monoclonal antibodies were shown to depend on amino acid changes either in three separated blocks of amino acid sequence in the semi-variable (SV) region of pilin, or in discrete regions that lie in the disulphide loop in the hypervariable (HV) region of the polypeptide. In contrast, antibody SMI, which reacts with all gonococcal pili, recognizes a poorly immunogenic region of moderate hydrophilicity but low turn potential lying in a conserved portion of the pilin molecule. Our results confirm that antibodies directed against epitopes in both the SV and HV regions are able to inhibit adhesion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-4-825
1987-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/4/mic-133-4-825.html?itemId=/content/journal/micro/10.1099/00221287-133-4-825&mimeType=html&fmt=ahah

References

  1. Altschuh D., Al Moudallal Z., Briand J. P., Van Regenmortel M. H. V. 1986; Immunochemical studies of tobacco mosaic virus. VI. Attempts to localize viral epitopes with monoclonal antibodies. Molecular Immunology 22:329–337
    [Google Scholar]
  2. Barlow D. J., Edwards M. S., Thornton J. M. 1986; Continuous and discontinuous protein antigenic determinants. Nature; London: 322747–748
    [Google Scholar]
  3. Benjamin D. C., Berzofsky J. A., East I. J., Gurd F. R. N., Hannum C., Leach S. J., Margoliash E., Michael J. G., Miller A., Prager E. M., Reichlin M., Sercarz E. E., Smith-Gill S. J., Todd P. E., Wilson A. C. 1984; The antigenic structure of proteins: a reappraisal. Annual Review of Immunology 2:67–101
    [Google Scholar]
  4. Bergstrom S., Robbins K., Koomey J. M., Swanson J. 1986; Piliation control mechanisms in Neisseria gonorrhoeae. Proceedings of the National Academy of Sciences of the United States of America 83:3890–3894
    [Google Scholar]
  5. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology 47:45–148
    [Google Scholar]
  6. Colman P. M., Varghese J. N., Laver W. G. 1983; Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature; London: 30341–44
    [Google Scholar]
  7. Corrigan A. J., Huang P. C. 1982; A BASIC microcomputer program for plotting the secondary structure of proteins. Computer Programs in Biomedicine 15:163–168
    [Google Scholar]
  8. Frost L. S., Lee J. S., Scraba D. G., Paranchych W. 1986; Two monoclonal antibodies specific for different epitopes within the amino-terminal region of F pilin. Journal of Bacteriology 168:192–198
    [Google Scholar]
  9. Haas R., Meyer T. F. 1986; The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44:107–115
    [Google Scholar]
  10. Hagblom P., Segal E., Billyard E., So M. 1985; Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature; London: 315156–158
    [Google Scholar]
  11. Heckels J. E., Virji M. 1986; Antigenic variation of gonococcal surface proteins: effect on virulence. In Protein-Carbohydrate Interactions in Biological Systems pp. 89–94 Lark D. L. Edited by London: Academic Press;
    [Google Scholar]
  12. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America 78:3824–3828
    [Google Scholar]
  13. Humphreys G. O., Willshaw G. A., Anderson E. S. 1975; A simple method for the preparation of large quantities of pure plasmid DNA. Biochimica et biophysica acta 383:457–463
    [Google Scholar]
  14. Lambden P. R., Heckels J. E., Mcbride H., Watt P. J. 1981; The identification and isolation of novel pilus types produced by variants of Neisseria gonorrhoeae P9 following selection in vivo. FEMS Microbiology Letters 10:339–341
    [Google Scholar]
  15. Maniatis T., Frisch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  16. Mardh P. A., Westrom L. 1976; Adherence of bacteria to vaginal epithelial cells. Infection and Immunity 13:661–666
    [Google Scholar]
  17. Messing J., Crea R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Research 9:309–321
    [Google Scholar]
  18. Meyer T. F., Billyard E., Haas R., Storzbach S., So M. 1984; Pilus genes of Neisseria gonorrhoeae: chromosomal organization and DNA sequence. Proceedings of the National Academy of Sciences of the United States of America 81:6110–6114
    [Google Scholar]
  19. Nicolson I. J., Perry A. C. F., Heckels J. E., Saunders J. R. 1987; Genetic analysis of variant pilin genes from Neisseria gonorrhoeae P9 cloned in Escherichia coli: physical and immunological properties of encoded pilins. Journal of General Microbiology 133:553–561
    [Google Scholar]
  20. Norrander J., Kempe T., Messing J. 1983; Improved M13 vectors using oligonucleotide- directed mutagenesis. Gene 26:101–106
    [Google Scholar]
  21. Punsalang A. P., Sawyer W. D. 1973; Role of pili in the virulence of Neisseria gonorrhoeae. Infection and Immunity 8:255–263
    [Google Scholar]
  22. Rathjen D. A., Underwood P. A. 1986; Identification of antigenic determinants on insulin recognised by monoclonal antibodies. Molecular Immunology 23:441–450
    [Google Scholar]
  23. Rothbard J. B., Fernandez R., Wang L., Teng N. N. H., Schoolnik G. K. 1985; Antibodies to peptides corresponding to a conserved sequence of gonococcal pilins block bacterial adhesion. Proceedings of the National Academy of Sciences of the United States of America 82:915–919
    [Google Scholar]
  24. Rowlands D. J., Clarke B. E., Carroll A. R., Brown F., Nicholson B. H., Bittle J. L., Houghton R. A., Lerner J. L. 1983; Chemical basis of antigenic variation in foot-and-mouth disease virus. Nature; London: 306694–697
    [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  26. Schoolnik G. K., Fernandez R., Tai J. Y., Rothbard J., Gotschlich E. C. 1984; Gonococcal pili: primary structure and receptor binding domain. Journal of Experimental Medicine 159:1351–1370
    [Google Scholar]
  27. Segal E., Hagblom P., Seifert H. S., So M. 1986; Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proceedings of the National Academy of Sciences of the United States of America 83:2177–2181
    [Google Scholar]
  28. Swanson J. 1973; Studies on gonococcal infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. Journal of Experimental Medicine 137:571–589
    [Google Scholar]
  29. Tainer J. A., Getzoff E. D., Alexander H., Houghten R. A., Olson A. J., Lerner R. A. 1984; The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature; London: 312127–133
    [Google Scholar]
  30. Virji M., Heckels J. E. 1983; Antigenic crossreactivity of Neisseria pili: investigations with type- and species-specific monoclonal antibodies. Journal of General Microbiology 129:2761–2768
    [Google Scholar]
  31. Virji M., Heckels J. E. 1984; The role of common and type-specific pilus antigenic domains in adhesion and virulence of gonococci for human epithelial cells. Journal of General Microbiology 130:1089–1095
    [Google Scholar]
  32. Virji M., Everson J. S., Lambden P. R. 1982; Effect of anti-pilus antisera on virulence of variants of Neisseria gonorrhoeae for cultured epithelial cells. Journal of General Microbiology 128:1095–1100
    [Google Scholar]
  33. Virji M., Heckels J. E., Watt P. J. 1983; Monoclonal antibodies to gonococcal pili: studies on antigenic determinants on pili from variants of strain P9. Journal of General Microbiology 129:1965–1973
    [Google Scholar]
  34. Walker J. N. B., Dean P. D. G., Saunders J. R. 1986; Identification and characterization of PmaCI, an endonuclease of novel specificity from Pseudomonas maltophila. Nucleic Acids Research 14:1293–1301
    [Google Scholar]
  35. Ward M. E., Watt P. J., Robertson J. N. 1974; The human fallopian tube: a model for gonococcal infection. Journal of Infectious Diseases 129:650–659
    [Google Scholar]
  36. Westhof E., Altschuh D., Moras D., Bloomer A. C., Mondragon A., Klug A., Van Regenmortel M. H. V. 1984; Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature; London: 311123–126
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-4-825
Loading
/content/journal/micro/10.1099/00221287-133-4-825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error