Cytochrome P-450 Accumulation and Loss as Controlled by Growth Phase of : Relationship to Oxygen, Glucose and Ethanol Concentrations Free

Abstract

Ethanol induced small amounts of cytochrome P-450 in NCYC 754 under conditions in which it is not normally detectable. Moreover, in non-growing yeast the existing cytochrome P-450 content was increased by 50 % at a limited range of glucose concentrations (8–12 % in 0·1 -potassium phosphate buffer, pH 7·0), in which ethanol is produced by fermentation, possibly at an optimum concentration for induction of cytochrome P-450. Added alkanols, other than ethanol, caused rapid degradation of cytochrome P-450 in non-growing yeast; the rate of loss was directly related to the lipid solubility of the alkanol. Ethanol therefore favoured the accumulation of cytochrome P-450 in yeast; this may be related to an important putative role of one of the isoenzymes in ethanol-tolerance of the yeast, by the oxidative removal of ethanol from the endoplasmic reticulum of the cell. It is the accumulation of dissolved oxygen, rather than ethanol, that occurs on cessation of yeast growth that is likely to trigger the rapid disappearance of cytochrome P-450 observed at this time.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-4-1053
1987-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/4/mic-133-4-1053.html?itemId=/content/journal/micro/10.1099/00221287-133-4-1053&mimeType=html&fmt=ahah

References

  1. Aguilera A., Benitez T. 1985; Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Archives of Microbiology 142:389–392
    [Google Scholar]
  2. Aoyama Y., Yoshida Y., Sato R. 1984; Yeast cytochrome P-450 catalysing lanosterol 14α-de- methylation. II. Lanosterol metabolism by purified P-450,4DM and by intact microsomes. Journal of Biological Chemistry 259:1661–1666
    [Google Scholar]
  3. Aoyama Y., Okikawa T., Yoshida Y. 1981; Evidence for the presence of cytochrome P-450 functional in lanosterol 14α-demethylation in microsomes of aerobically grown respiring yeast. Biochi- mica et biophysica acta 665:596–601
    [Google Scholar]
  4. Beaven M. J., Charpentier C., Rose A. H. 1982; Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. Journal of General Microbiology 128:1447–1455
    [Google Scholar]
  5. Blatiak A., Gondal J. A., Wiseman A. 1980; Mechanism of degradation of cytochrome P-450 in non-growing Saccharomyces cerevisiae: anaerobic, chloramphenicol and cycloheximide as protective agents. Biochemical Society Transactions 8:711–712
    [Google Scholar]
  6. Blatiak A., King D. J., Wiseman A., Salihon J., Winkler M. A. 1985a; Enzyme induction by oxygen in the accumulation of cytochrome P-450 during batch fermentations in 20 % d-glucose with Saccharomyces cerevisiae. Enzyme and Microbial Technology 7:553–556
    [Google Scholar]
  7. Blatiak A., King D. J., Wiseman A. 1985b; Effect of alcohols and of glucose on the level of cytochrome P-450 in Saccharomyces cerevisiae after resuspension in buffer. Biochemical Society Transactions 13:924
    [Google Scholar]
  8. Brown S. W., Oliver S. G., Harrison D. E. F., Righelato R. C. 1981; Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. European Journal of Applied Microbiology and Biotechnology 11:151–155
    [Google Scholar]
  9. Callen D. F., Wolf C. R., Philpot R. M. 1980; Cytochrome P-450 mediated genetic activity and cytotoxocity of seven halogenated aliphatic hydrocarbons in Saccharomyces cerevisiae. Mutation Research 77:55–63
    [Google Scholar]
  10. Casey G. P., Magnus C. A., Ingledew W. M. 1983; High gravity brewing: nutrient enhanced production of high concentrations of ethanol by brewing yeast. Biotechnology tetters 5:429–434
    [Google Scholar]
  11. Coon M. J., Koop D. R., Reeve L. E., Crump B. L. 1984; Alcohol metabolism and toxicity: role of cytochrome P-450. Fundamental Applied Toxicology 4:134–143
    [Google Scholar]
  12. Del carratore R., Morganti C., Galli A., Bronzetta G. 1984; Cytochrome P-450 induci- bility by ethanol and 7-ethoxycoumarin O-deethyl- ation in S. cerevisiae. Biochemical and Biophysical Research Communications 123:186–193
    [Google Scholar]
  13. Guarente L., Mason T. 1983; Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32:1279–1286
    [Google Scholar]
  14. Gudenus R., Spence A., Hartig A., Smith M., Ruis H. 1984; Regulation of transcription of the Saccharomyces cerevisiae CYC1 gene: identification of a DNA region involved in heme control. Current Genetics 8:45–48
    [Google Scholar]
  15. Guijarro J. M., Lagunas R. 1984; Saccharomyces cerevisiae does not accumulate ethnol against a concentration gradient. Journal of Bacteriology 160:874–878
    [Google Scholar]
  16. Hortner H., Ammerer G., Hartter E., Hamilton B., Rytka J., Bilinski T., Ruis H. 1982; Regulation of synthesis of catalases and iso-1 - cytochrome cIn Saccharomyces cerevisiae by glucose, oxygen and heme. European Journal of Biochemistry 128:179–184
    [Google Scholar]
  17. Ingelman-Sundbury M., Hagbjork A. L. 1982; On the significance of the cytochrome P-450- dependent hydroxyl radical mediated oxygenation mechanism. Xenobiotica 12:673–686
    [Google Scholar]
  18. Jones R. P., Greenfield P. F. 1985; Replicative inactivation and metabolic inhibition in yeast ethanol fermentations. Biotechnology tetters 7:223–228
    [Google Scholar]
  19. Karenlampi S.O., Martin E., Hanninen O. O. P. 1981; Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae. Biochemical Journal 194:407–413
    [Google Scholar]
  20. Kelly D., Parry J. M. 1983; Metabolic activation of cytochrome P-450/P-448 in the Saccharomyces cerevisiae. Mutation Research 108:147–159
    [Google Scholar]
  21. King D. J. 1982 Studies on the biosynthesis and specificity of cytochrome P-450 in the yeast Saccharomyces cerevisiae PhD thesis University of Surrey; UK.:
    [Google Scholar]
  22. King D. J., Azari M. R., Wiseman A. 1982; The induction of cytochrome P-448 dependent benzo(a) pyrene hydroxylase in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 105:1115–1121
    [Google Scholar]
  23. King D. J., Wiseman A., Wilkie D. 1983; Studies on the genetic regulation of cytochrome P-450 production in Saccharomyces cerevisiae. Molecular and General Genetics 192:466–470
    [Google Scholar]
  24. King D. J., Azari M. R., Wiseman A. 1984; Studies on the properties of highly purified cytochrome P-448 and its dependent activity benzo(a)- pyrene hydroxylase from Saccharomyces cerevisiae. Xenobiotica 14:187–206
    [Google Scholar]
  25. Laz T. M., Pietras D. F., Sherman F. 1984; Differential regulation of the duplicated isocytochrome c genes in yeast. Proceedings of the National Academy of Sciences of the United States of America 81:4475–4479
    [Google Scholar]
  26. Leao C., Vanuden N. 1982a; Effects of ethanol and other alkanols on the kinetics and the activation parameters of thermal death in Saccharomyces cerevisiae. Biotechnology and Bioengineering 24:2601–2604
    [Google Scholar]
  27. Leao C., Van uden N. 1982b; Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnology and Bioengineering 24:2601–2604
    [Google Scholar]
  28. Leao C., Van uden N. 1983; Effects of ethanol and other alkanols on the ammonium transport system of Saccharomyces cerevisiae. Biotechnology and Bioengineering 25:2085–2090
    [Google Scholar]
  29. Leao C., Van uden N. 1984a; Effects of ethanol and other alkanols on the general amino acid permease of Saccharomyces cerevisiae. Biotechnology and Bioengineering 26:403–405
    [Google Scholar]
  30. Leao C., Van uden N. 1984b; Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochimica et biophy- sica acta 774:43–48
    [Google Scholar]
  31. Leao C., Van uden N. 1985; Effects of ethanol and other alkanols on the temperature relations of glucose transport and fermentation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 22:359–363
    [Google Scholar]
  32. Loureiro V., Ferreira H. G. 1983; On the intracellular accumulation of ethanol in yeast. Biotechnology and Bioengineering 25:2263–2269
    [Google Scholar]
  33. Morita T., Mifuchi I. 1984; Ethanol enhancement of cytochrome P-450 in yeast Saccharomyces cerevisiae D7. Chemical Pharmacology Bulletin 32:1624–1627
    [Google Scholar]
  34. Muller R., Schmidt W. E., Stier A. 1985; The site of cyclic AMP-dependent protein kinase catalysed phosphorylation of cytochrome P-450 LM2. FEBS Utters 187:21–24
    [Google Scholar]
  35. Onura T., Sato R. 1964; The carbon monoxide binding pigment of liver microsomes. I. Evidence for its haemoprotein in nature. Journal of Biological Chemistry 239:2370–2379
    [Google Scholar]
  36. Prognon P., Blais J., Vigny P., Averbeck D., Averbeck S., Gond A. 1984; The metabolism of 8-methoxypsoralen by Saccharomyces cerevisiae. Evidence for an inducing effect of ethanol. II Farmaco Edizione Scientifica 39:739–751
    [Google Scholar]
  37. Ross E., Schatz G. 1976; Cytochrome c, of Baker's yeast. II. Synthesis on cytoplasmic ribosomes and influences of oxygen and heme on accumulation of the apoprotein. Journal of Biological Chemistry 251:1997–2004
    [Google Scholar]
  38. Sauer M., Kappeli O., Fiechter A. 1982; Comparison of the cytochrome P-450 containing monooxygenases originating from two different yeasts. In Cytochrome P-450: Biochemistry, Biophysics and Environmental Implications pp. 453–457 Hietanen E., Laitinen M., Hanninen O. Edited by Amsterdam: Elsevier Biomedical Press;
    [Google Scholar]
  39. Thomas D. S., Eiossack J. A., Rose A. H. 1978; Plasma membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Archives of Microbiology 117:239–245
    [Google Scholar]
  40. Walker-Caprioglio H. M., Rodrigues R. J., Parks L. W. 1985; Recovery of Saccharomyces cerevisiae from ethanol-induced growth inhibition. Applied and Environmental Microbiology 50:685–689
    [Google Scholar]
  41. Wiseman A., Woods L. F. J. 1979; Benzo(a)pyrene metabolites formed by the action of yeast cytochrome P-450/P-448. Journal of Chemical Technology and Biotechnology 29:320–324
    [Google Scholar]
  42. Wiseman A., Lim T. K., Mccloud C. 1975; Relationship of cytochrome P-450 to growth phase of Brewer's yeast in 1% or 20% glucose medium. Biochemical Society Transactions 3:276–278
    [Google Scholar]
  43. Wiseman A., Lim T. K., Woods L. F. J. 1978; Regulation of the biosynthesis of cytochrome P-450 in Brewer's yeast. Role of cyclic AMP. Biochimica et biophysica acta 544:615–623
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-4-1053
Loading
/content/journal/micro/10.1099/00221287-133-4-1053
Loading

Data & Media loading...

Most cited Most Cited RSS feed