1887

Abstract

SUMMARY: The incorporation of specifically labelled sugars into alginate by mucoid strains of both and resulted in substantially different labelling patterns for fructose and glucose. Alginate was synthesized principally from degradation products of glucose, whereas the majority of the polymer produced from fructose was assembled from intact hexose units. A possible explanation for the limited synthesis of alginate from undegraded glucose molecules is that one of the necessary enzymes, glucose-phosphate isomerase, is subject to inhibition by 6-phosphogluconate, a metabolite involved in the catabolism of sugars via the Entner-Doudoroff pathway in both of the organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-4-1045
1987-04-01
2022-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/4/mic-133-4-1045.html?itemId=/content/journal/micro/10.1099/00221287-133-4-1045&mimeType=html&fmt=ahah

References

  1. Anderson A. J., Dawes E. A. 1985; Regulation of glucose 6-phosphate dehydrogenase in Zymomonas mobilis CP4. FEMS Microbiology Letters 27:23–27
    [Google Scholar]
  2. Banerjee P. C. 1986; Accumulation of fructose 1,6-bisphosphate in mutant cells of mucoid Pseudomonas aeruginosa as an evidence of phosphofructokinase activity. Archives of Microbiology 144:405–407
    [Google Scholar]
  3. Banerjee P. C., Vanags R. I., Chakrabarty A. M., Maitra P. K. 1983; Alginic acid synthesis in Pseudomonas mendocina. Journal of Bacteriology 155:238–245
    [Google Scholar]
  4. Banerjee P. C., Vanags R. I., Chakrabarty A. M., Maitra P. K. 1985; Fructose 1,6-bisphosphate aldolase activity is essential for synthesis of alginate from glucose by Pseudomonas aeruginosa. Journal of Bacteriology 161:458–460
    [Google Scholar]
  5. Blumenkrantz N., Absoe-Hansen G. 1973; A new method for quantitative determination of uronic acids. Analytical Biochemistry 54:484–489
    [Google Scholar]
  6. Bray G. A. 1960; A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analytical Biochemistry 1:279–285
    [Google Scholar]
  7. Darzins A., Nixon L. L., Vanags R. I., Chakrabarty A. M. 1985; Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginatenegative mutants of Pseudomonas aeruginosa. Journal of Bacteriology 161:249–257
    [Google Scholar]
  8. Van Dijken J. P., Quayle J. R. 1977; Fructose metabolism in four Pseudomonas species. Archives of Microbiology 114:281–286
    [Google Scholar]
  9. Doelle H. W. 1982; The existence of two separate constitutive enzymes for glucose and fructose metabolism in Zymomonas mobilis. European Journal of Applied Microbiology and Biotechnology 15:20–24
    [Google Scholar]
  10. Gill J. F., Deretic V. J., Chakrabarty A. M. 1986; Overproduction and assay of Pseudomonas aeruginosa phosphomannose isomerase. Journal of Bacteriology 167:611–615
    [Google Scholar]
  11. Gracy R. W., Tilley B. E. 1975; Phosphoglucose isomerase of human erythrocytes and cardiac tissue. Methods in Enzymology 41:392–400
    [Google Scholar]
  12. Hacking A. J., Taylor I. W. F., Jarman T. R., Govan J. R. W. 1983; Alginate biosynthesis by Pseudomonas mendocina. Journal of General Microbiology 129:3473–3480
    [Google Scholar]
  13. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344
    [Google Scholar]
  14. Hizukuri S., Takeda Y., Nikuni Z. 1975; Glucose 6-phosphate isomerase from peas. Methods in Enzymology 41:388–392
    [Google Scholar]
  15. Horan N. J., Jarman T. R., Dawes E. A. 1983; Studies on some enzymes of alginic acid biosynthesis in Azotobacter vinelandii grown in continuous culture. Journal of General Microbiology 129:2985–2990
    [Google Scholar]
  16. Jayasuria C. G. N. 1955; The isolation and characteristics of an oxalate-decomposing organism. Journal of General Microbiology 12:419–428
    [Google Scholar]
  17. Kalb V. F., Bernlohr R. W. 1977; A new spectrophotometric assay for protein in cell extracts. Analytical Biochemistry 82:362–371
    [Google Scholar]
  18. Kovachevich R., Wood W. A. 1955; Carbohydrate metabolism by Pseudomonas fluorescens. III. Purification of a 6-phosphogluconate dehydratase. Journal of Biological Chemistry 213:745–756
    [Google Scholar]
  19. Lessie T. G., Phibbs P. V. Jr 1984; Alternative pathways of carbohydrate utilisation in Pseudomonas. Annual Review of Microbiology 38:359–387
    [Google Scholar]
  20. Lynn A. R., Sokatch J. R. 1984; Incorporation of isotope from specifically labelled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinelandii. Journal of Bacteriology 158:1161–1162
    [Google Scholar]
  21. Midgley M., Dawes E. A. 1973; The regulation of transport of glucose and methyl α-glucoside in Pseudomonas aeruginosa. Biochemical Journal 132:141–154
    [Google Scholar]
  22. Mitchell C. G., Dawes E. A. 1982; The role of oxygen in the regulation of glucose metabolism, transport and the tricarboxylic acid cycle in Pseudomonas aeruginosa. Journal of General Microbiology 128:49–59
    [Google Scholar]
  23. Nosoh Y. 1975; Glucose 6-phosphate isomerase from Bacillus stearothermophilus. Methods in Enzymology 41:383–387
    [Google Scholar]
  24. Piggott N. H., Sutherland I. W., Jarman T. R. 1981; Enzymes involved in the biosynthesis of alginate by Pseudomonas aeruginosa. European Journal of Applied Microbiology and Biotechnology 13:179–183
    [Google Scholar]
  25. Pindar D. F., Bucke C. 1975; The biosynthesis of alginic acid by Azotobacter vinelandii. Biochemical Journal 152:617–622
    [Google Scholar]
  26. Pugashetti B. K., Vadas L., Prihar H. S., Feingold D. S. 1983; GDP-mannose dehydrogenase and biosynthesis of alginate-like polysaccharide in a mucoid strain of Pseudomonas aeruginosa. Journal of Bacteriology 153:1107–1110
    [Google Scholar]
  27. Roberts B. K., Midgley M., Dawes E. A. 1973; The metabolism of 2-oxogluconate by Pseudomonas aeruginosa. Journal of General Microbiology 78:319–329
    [Google Scholar]
  28. Sawyer M. H., Baumann P., Berman S. J., Canovas J. L., Berman R. H. 1977; Pathways of d-fructose catabolism in species of Pseudomonas. Archives of Microbiology 112:49–55
    [Google Scholar]
  29. Sengha S. S. 1985 The physiology and energetics of alginic acid biosynthesis in Pseudomonas mendocina PhD thesis University of Hull.:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-4-1045
Loading
/content/journal/micro/10.1099/00221287-133-4-1045
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error