Influence of the Culture Medium on the Production of Iturin A by Free

Abstract

The production of iturin A by was studied with respect to the composition of the culture medium. Increasing phosphate concentrations did not modify the antibiotic yield. Fructose, sucrose and mannitol were better carbon sources than glucose for antibiotic production. The nature of the nitrogen source was an important factor in the production of antibiotic. Among the amino acids which are components of iturin A, -asparagine was the best substrate for the biosynthesis of iturin A; -glutamine and -serine were rather poor substrates while -proline and -tyrosine gave no antibiotic. Ammonium salts permitted good synthesis of antibiotic but the addition of calcium ions to the culture medium inhibited the excretion of antibiotic from the cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-3-767
1987-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/3/mic-133-3-767.html?itemId=/content/journal/micro/10.1099/00221287-133-3-767&mimeType=html&fmt=ahah

References

  1. Besson F., Peypoux F., Michel G., Delcambe L. 1976; Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. Journal of Antibiotics 29:1043–1049
    [Google Scholar]
  2. Besson F., Peypoux F., Michel G., Delcambe L. 1978; Identification of antibiotics of iturin group in various strains of Bacillus subtilis. Journal of Antibiotics 31:284–288
    [Google Scholar]
  3. Chevanet C., Besson F., Michel G. 1986; Effect of various growth conditions on spore formation and bacillomycin L production in Bacillus subtilis. Canadian Journal of Microbiology 32:254–258
    [Google Scholar]
  4. Formica J.V., Waring M.J. 1983; Effect of phosphate and amino acids on echinomycin biosynthesis by Streptomyces echinatus. Antimicrobial Agents and Chemotherapy 24:735–741
    [Google Scholar]
  5. Haavik H.I. 1979; Amino acid control mechanism for bacitracin formation by Bacillus licheniformis. Folia microbiologica 24:234–239
    [Google Scholar]
  6. Haavik H.I. 1981; Effect of amino acids upon bacitracin production by Bacillus licheniformis. FEMS Microbiology Letters 10:111–114
    [Google Scholar]
  7. Isogai I., Takayama S., Murakoshi S., Suzuki A. 1982; Structures of β-amino acids in antibiotics iturin A. Tetrahedron Letters 23:3065–3068
    [Google Scholar]
  8. Ito M., Aida K., Uemura T. 1969; Studies on the bacterial formation of a peptide antibiotic, colistin. III. On the biosynthetic pathway of α,γ-diamino- butyric acid and the relationship between colistin formation and the amino acid metabolism in Bacillus colistinus Koyama. Agricultural and Biological Chemistry 33:949–958
    [Google Scholar]
  9. Ito-Kawaga M., Koyama M., Kondo S. 1983; Peptide antibiotic K-582 production in relation to amino acid metabolism in Metarrhizium anisopliae. Journal of Antibiotics 37:487–493
    [Google Scholar]
  10. Jutisz M. 1960; Acides amines et peptides. In Chromatographie en chimie organique et biologique 2 p. 373. Lederer E. Edited by Paris: Masson;
    [Google Scholar]
  11. Katz E. 1960; Influence of valine, isoleucine and related compounds on actinomycin synthesis. Journal of Biological Chemistry 235:1090–1094
    [Google Scholar]
  12. Katz E., Weissbach H. 1963; Incorporation of 14C-labelled amino acids into actinomycin and protein by Streptomyces antibioticus. Journal of Biological Chemistry 238:666–675
    [Google Scholar]
  13. Katz E., Waldron C.R. 1961; Role of valine and isoleucine as regulators of actinomycin peptide formation by Streptomyces chrysomallus. Journal of Bacteriology 82:600–608
    [Google Scholar]
  14. Leung D.C., Baxter R.M. 1972; substrate derived reversible and irreversible inhibitors of the multienzyme I of gramicidine S biosynthesis. Bio- chimica et biophysica acta 279:34–37
    [Google Scholar]
  15. Mach B., Tatum E.L. 1964; Environmental control of amino acid substitutions in the biosynthesis of the antibiotic polypeptide tyrocidine. Proceedings of the National Academy of Sciences of the United States of America 52:876–883
    [Google Scholar]
  16. Martin J.F., Demain A.L. 1980; Control of antibiotic synthesis. Microbiological Reviews 44:230–251
    [Google Scholar]
  17. Matteo C.C., Glade M., Tanaka A., Piret J., Demain A.L. 1975; Microbiological studies on the formation of gramicidin S synthetases. Biotechnology and Bioengineering 17:129–142
    [Google Scholar]
  18. Mhammedi A., Peypoux F., Besson F., Michel G. 1982; Bacillomycin F, a new antibiotic of iturin group: isolation and characterization. Journal of Antibiotics 35:306–311
    [Google Scholar]
  19. Peypoux F., Guinand M., Michel G., Delcambe L., Das B.C., Varenne P., Lederer E. 1973; Isolement de l'acide 3-amino-12-methyl tetradecano- i'que et de l'acide 3-amino-12-methyl tridecanoi'que a partir de l'iturine, antibiotique de Bacillus subtilis. Tetrahedron 29:3455–3459
    [Google Scholar]
  20. Peypoux F., Guinand M., Michel G., Delcambe L., Das B.C., Lederer E. 1978; Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17:3992–3996
    [Google Scholar]
  21. Peypoux F., Marion D., Maget-Dana R., Ptak M. . 1985; Structure of bacillomycin F, a new peptidic antibiotic of the iturin group. European Journal of Biochemistry 153:335–340
    [Google Scholar]
  22. Srinivasa B.R., Ramachandran L.K. 1979; The polymyxins. Journal of Scientific and Industrial Research 38:695–709
    [Google Scholar]
  23. Vandamme E.J., Demain A.L. 1976; Nutrition of Bacillus brevis ATCC 9999 the producer of gramicidin S. Antimicrobial Agents and Chemotherapy 10:265–273
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-3-767
Loading
/content/journal/micro/10.1099/00221287-133-3-767
Loading

Data & Media loading...

Most cited Most Cited RSS feed