1887

Abstract

F24 metabolized both stereoisomers of phenylglycine and enzyme studies revealed that -phenylglycine was transaminated by a constitutive enzyme while the -stereoisomer was oxidized by a phenazine-methosulphate-dependent -amino-acid dehydrogenase. This latter enzyme was not induced during growth on -phenylglycine. Phenylglyoxylate formed in the reactions was decarboxylated by an inducible enzyme to benzaldehyde, which was oxidized mainly by an inducible phenazine-methosulphate-dependent benzaldehyde dehydrogenase not described earlier. Benzoate was further metabolized via 3-hydroxybenzoate to gentisate, which in turn was further degraded through a glutathione-dependent pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-3-745
1987-03-01
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/3/mic-133-3-745.html?itemId=/content/journal/micro/10.1099/00221287-133-3-745&mimeType=html&fmt=ahah

References

  1. Arnaud A., Galzy P., Jallageas J.-C. 1980; Production d’acides α-aminés stéréospecifiques par hydrolyse biologique d’α-aminonitriles racemiques. Societe chimique de France 1-2:87–90
    [Google Scholar]
  2. Bater A.J., Venables W.A., Thomas S. 1977; Allohydroxy-d-proline dehydrogenase. An inducible membrane-bound enzyme in Pseudomonas aeruginosa PAOl. Archives of Microbiology 112:287–289
    [Google Scholar]
  3. Boesten W.H., Meyer-Hoffman L.R.M. 1975; Enzympreparaat met aminopeptidase activiteit. Dutch Patent Application no.7513551.
    [Google Scholar]
  4. Cecere F., Galli G., Morisi F. 1975; Substrate and steric specificity of hydropyrimidine hydrase. FEBS Letters 57:192–194
    [Google Scholar]
  5. Cecere F., Galli G., DellaPenna G., Rappuoli B. 1978; Process for producing d-carbamoyl amino acids and the corresponding d-amino acids. British Patent no.1506067.
    [Google Scholar]
  6. Chandra P., Vining L.C. 1968; Conversion of phenylalanine to tyrosine by microorganisms. Canadian Journal of Microbiology 14:573–578
    [Google Scholar]
  7. Crawford R.L., Frick T.D. 1977; Rapid spectrophotometric differentiation between glutathione-dependent and glutathione-independent gentisate and homogentisate pathways. Applied and Environmental Microbiology 34:170–174
    [Google Scholar]
  8. Crawford R.L., Hutton S.W., Chapman P.J. 1975; Purification and properties of gentisate 1,2- dioxygenase from Moraxella osloensis.. Journal of Bacteriology 121:794–799
    [Google Scholar]
  9. Duine J.A., Frank J. 1981; Methanol dehydrogenase: a quinoprotein. In Proceedings of the Third International Symposium on Microbial Growth on C1 - compounds, pp 31–41 Dalton H. Edited by London: Heyden;
    [Google Scholar]
  10. Freese E., Sheu C.W., Galliers E. 1973; Function of lipophilic acids as antimicrobial food additives. Nature London: 241:321–325
    [Google Scholar]
  11. Friedrich B., Schlegel H.G. 1972; Die Hydroxylierung von Phenylalanin durch Hydrogenomonas eutropha H16. Archives of Microbiology 83:17–31
    [Google Scholar]
  12. Guroff G., Ito T. 1964; Phenylalanine hydroxy-lation by Pseudomonas species (ATCC 11299a). Journal of Biological Chemistry 240:1175–1184
    [Google Scholar]
  13. Hagedorn S.R., Chapman P.J. 1985; Glutathione-independent maleylacetoacetate isomerase in Gram-positive bacteria. Journal of Bacteriology 163:803–805
    [Google Scholar]
  14. Hagedorn S.R., Bradley G., Chapman P.J. 1985; Glutathione-independent isomerization of maleylpyruvate by Bacillus megaterium and other Gram-positive bacteria. Journal of Bacteriology 163:640–647
    [Google Scholar]
  15. Hotta S.S. 1968; Oxidative metabolism of isolated brain mitochondria: changes caused by aminooxy-acetate. Archives of Biochemistry and Biophysics 127:132–139
    [Google Scholar]
  16. Hummel W., Weiss N., Kula M.-R. 1984; Isolation and characterization of a bacterium possessing l-phenylalanine dehydrogenase activity. Archives of Microbiology 137:47–52
    [Google Scholar]
  17. Lack L. 1959; The enzymic oxidation of gentisic acid. Biochimica et biophysica acta 34:117–123
    [Google Scholar]
  18. Marshall V.P., Sokatch J.R. 1968; Oxidation of d-amino acids by a particulate enzyme from Pseudomonas aeruginosa.. Journal of Bacteriology 95:1419–1424
    [Google Scholar]
  19. Nakamori S., Yokozeki K., Mitsugi K., Eguchi E., Iwagami H. 1980; Method for producing d-α-amino acid. United States Patent no.4211840.
    [Google Scholar]
  20. Nakata H., Yamauchi T., Fugisawa H. 1979; Phenylalanine hydroxylase from Chromobacterium violaceum. Purification and characterization. Journal of Biological Chemistry 254:1829–1833
    [Google Scholar]
  21. Olivieri R., Fascetti E., Angelini L., Degen L. 1979; Enzymatic conversion of N-carbamoyl-d-amino acids to d-amino acids. Enzyme and Microbial Technology 1:201–204
    [Google Scholar]
  22. Olivieri R., Fascetti E., Angelini L., Degen L. 1981; Microbial transformation of racemic hydan- toins to d-amino acids. Biotechnology and Bioengineering 23:2173–2183
    [Google Scholar]
  23. Pioli D., Venables W.A., Franklin F.C.H. 1976; d-Alanine dehydrogenase. Archives of Microbiology 110:287–293
    [Google Scholar]
  24. Schutt H. 1981; Stereoselective resolution of phen- ylglycine derivatives and 4-hydroxyphenylglycine derivatives with enzyme resins. United States Patent no.4260684.
    [Google Scholar]
  25. Schutt H., Schmidt-Kastner G., Arens A., Preiss M. 1985; Preparation of optically active d-arylglycines for use as side chains for semisynthetic penicillins and cephalosporins using immobilized subtilisins in two-phase systems. Biotechnology and Bioengineering 27:420–433
    [Google Scholar]
  26. Stirling D.I., Dalton H. 1978; Purification and properties of an NAD(P)+-linked formaldehyde dehydrogenase from Methylococcus capsulatus(Bath). Journal of General Microbiology 107:19–29
    [Google Scholar]
  27. Takahashi S., Ohashi T., Kii Y., Kumagai H., Yamada H. 1979; Microbial transformations of hydantoins to N-carbamyl-d-amino acids. Journal of Fermentation Technology 57:328–332
    [Google Scholar]
  28. Tsukada K. 1966; d-Amino acid dehydrogenase of Pseudomonas fluorescens.. Journal of Biological Chemistry 241:4522–4528
    [Google Scholar]
  29. vandenTweel W.J.J., Smits J.P., DeBont J.A.M. 1986a; Microbial metabolism of d- and l-phenylglycine by Pseudomonas putida LW-4. Archives of Microbiology 144:169–174
    [Google Scholar]
  30. VandenTweel W.J.J., Janssens R.J.J., DeBont J.A.M. 1986b; Degradation of 4-hydroxyphenyl- acetate by Xanthobacter 124X; physiological resemblance with other Gram-negative bacteria. Antonie van Leeuwenhoek 52:309–318
    [Google Scholar]
  31. Yamada S., Hongo C., Yoshioka R., Chibata I. 1979; Preparation of D-p-hydroxyphenylglycine. Optical resolution of DL-p-hydroxyphenylglycine with d-3-bromocamphor-8-sulfonic acid. Agricultural and Biological Chemistry 43:395–396
    [Google Scholar]
  32. Yamanaka K. 1981; Comparative aspects of methanol dehydrogenases. In Proceedings of the Third International Symposium on Microbial Growth on C1 - compounds, pp 21–30 Dalton H. Edited by London: Heyden;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-3-745
Loading
/content/journal/micro/10.1099/00221287-133-3-745
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error