1887

Abstract

Seventy two Tn5 transposon insertions were isolated in the operon carried on the multicopy plasmid pFRD79. The polar nature of these mutations permitted examination of the expression and localization of the polypeptides in novel subunit combinations. The minimal catalytic unit is the FRDA plus B dimer. A transposon within (::Tn5) produces inactive, soluble FRDA polypeptide which has covalently attached 8(3-histidyl)flavin adenine dinucleotide cofactor. A transposon mutation within (::Tn5) produces soluble, catalytically active dimer. An insertion in (::Tn5) produces both a soluble trimer composed of FRDABC, and a tetramer of FRDABC and truncated FRDD bound to the inner membrane. Eighty percent of the activity is in the soluble form. Using this mutant, the requirement for FRDD both for optimal activity of the catalytic domain and for proper anchorage in the cytoplasmic membrane was demonstrated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-3-597
1987-03-01
2022-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/3/mic-133-3-597.html?itemId=/content/journal/micro/10.1099/00221287-133-3-597&mimeType=html&fmt=ahah

References

  1. Berg D. E. 1977; Insertion and excision of the transposable resistance determinant Tn5. In DNA Insertion Elements, Plasmids and Episomes pp Bukhan A. I., Shappiro J. A., Adhya S. L. Edited by Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Berg D. E., Jorgenson R., Davies J. 1978; Transposable kanamycin-neomycin resistance determinants. In Microbiology-1978, pp 13–15 Schlesinger D. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Berg D. E., Weiss A., Crossland L. 1980; Polarity of Tn5 insertion mutations in Escherichia coli. Journal of Bacteriology 142:439–446
    [Google Scholar]
  4. Berg D. E., Schmandt M. A., Lowe J. B. 1983; Specificity of transposon Tn5 insertion. Genetics 105:813–828
    [Google Scholar]
  5. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  6. Bossi L., Ciampi M. S. 1981; DNA sequences at the sites of three insertions of the transposable element Tn5 in the histidine operon of Salmonella. Molecular and General Genetics 183:406–408
    [Google Scholar]
  7. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. 1980; The detection of DNA-binding proteins by protein blotting. Nucleic Acids Research 8:1–20
    [Google Scholar]
  8. Bradford M. M. 1976; Sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  9. Cammack R., Patil D. S., Weiner J. H. 1986; Evidence that centre 2 in Escherichia coli fumarate reductase is a [4Fe-4S] cluster. Biochimica et biophysica acta 870:538–544
    [Google Scholar]
  10. Cecchini G., Ackrell B. A. C, Deshler J. O., Gunsalus R. P. 1986; Reconstitution of quinone reduction and characterization of Escherichia colifumarate reductase activity. Journal of Biological Chemistry 261:1808–1814
    [Google Scholar]
  11. Clewell D. B., Helinski D. R. 1972; Effect of growth conditions on the formation of the relaxation complex of supercoiled ColEl deoxyribonucleic acid and protein in Escherichia coli. Journal of Bacteriology 110:1135–1146
    [Google Scholar]
  12. Cole S. T. 1982; Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. European Journal of Biochemistry 122:479–484
    [Google Scholar]
  13. Cole S. T., Grundström T., Jaurin B., Robinson J. J., Weiner J. H. 1982; Location and nucleotide sequence of frdB, the gene coding for the iron-sulphur protein subunit of the fumarate reductase of Escherichia coli. European Journal of Biochemistry 126:211–216
    [Google Scholar]
  14. Cole S. T., Condon C., Lemire B. D., Weiner J. H. 1986; Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme. Biochimica et biophysica acta 811:381–403
    [Google Scholar]
  15. DeBruijn F. J., Ausubel F. M. 1981; The cloning and transposon Tn5 mutagenesis of the ginA region of Klebsiella pneumoniae: identification of glnR, a gene involved in the regulation of the nil and hutoperons. Molecular and General Genetics 183:289–297
    [Google Scholar]
  16. DeBruijn F. J., Stroke I. L., Marvel D. J., Ausubel F. M. 1983; Construction of a correlated physical and genetic map of the Klebsiella pneumoniae hisDGO region using transposon Tn5 mutagenesis. EMBO Journal 2:1831–1838
    [Google Scholar]
  17. Dickie P., Weiner J. H. 1979; Purification and characterization of membrane-bound fumarate reductase from anaerobically grown Escherichia coli. Canadian Journal of Biochemistry 57:813–821
    [Google Scholar]
  18. Goldberg A. L. 1972; Degradation of abnormal proteins in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 69:422–426
    [Google Scholar]
  19. Grundström T., Jaurin B. 1982; Overlap between ampC and frd operons on the Escherichia colichromosome. Proceedings of the National Academy of Sciences of the United States of America 79:1111–1115
    [Google Scholar]
  20. Haddock B. A., Jones C. W. 1977; Bacterial respiration. Bacteriological Reviews 41:47–99
    [Google Scholar]
  21. Hederstedt L. 1983; Succinate dehydrogenase mutants of Bacillus subtilis lacking covalently bound flavin in the flavoprotein subunit. European Journal of Biochemistry 132:589–593
    [Google Scholar]
  22. Hederstedt L., Maguire J. J., Waring A. J., Ohnishi T. 1985; Characterization by electron paramagnetic resonance and studies on subunit location and assembly of the iron-sulfur clusters of Bacillus subtilis succinate dehydrogenase. Journal of Biological Chemistry 260:5554–5562
    [Google Scholar]
  23. Ingledew W. J., Poole R. K. 1984; The respiratory chains of Escherichia coli. Microbiological Reviews 48:222–271
    [Google Scholar]
  24. Johnson R. C., Yin J. C. P, Reznikoff W. S. 1982; Control of Tn5 transposition in Escherichia coii is mediated by protein from the right repeat. Cell 30:873–882
    [Google Scholar]
  25. Johnson D. A., Gautsch J. W., Sportsman J. R., Elder J. H. 1984; Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Analysis Techniques 1:3–8
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 277:680–685
    [Google Scholar]
  27. Laird A. J., Young I. G. 1980; Tn5 mutagenesis of the enterochelin gene cluster of Escherichia coli. Gene 11:359–366
    [Google Scholar]
  28. Lemire B. D., Robinson J. J., Weiner J. H. 1982; Identification of the membrane anchor polypeptides of Escherichia coli. Journal of Bacteriology 152:1126–1131
    [Google Scholar]
  29. Lemire B. D., Robinson J. J., Bradley R. D., Scraba D. G., Weiner J. H. 1983; Structure of fumarate reductase on the cytoplasmic membrane of Escherichia coli. Journal of Bacteriology 155:391–397
    [Google Scholar]
  30. Lohmeier E., Hagen D. S., Dickie P., Weiner J. H. 1981; Cloning and expression of the fumarate reductase gene of Escherichia coli. Canadian Journal of Biochemistry 59:158–164
    [Google Scholar]
  31. Lupski J. R., Smillie B. L., Blattner F. R., Godson G. N. 1982; Cloning and characterization of the Escherichia coli chromosomal region surrounding the dnaG gene, with a correlated physical and genetic map of dnaG generated via transposon Tn5 mutagenesis. Molecular and General Genetics 185:120–128
    [Google Scholar]
  32. Mandel M., Higa A. 1970; Calcium dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  33. Miller J. H. (ed) 1972 Experiments in Molecular Genetics, pp 431–435 Cold Spring Harbor, New York:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  34. Miller J. H., Calos M. P., Galas D., Hofer M., Buchel D. E., Muller-Hill B. 1980; Genetic analysis of transpositions in the lac region of Escherichia coli. Journal of Molecular Biology 144:118
    [Google Scholar]
  35. Oliver D. 1985; Protein secretion in Escherichia coli. Annual Review of Microbiology 39:615–648
    [Google Scholar]
  36. Pannekoek H., Hillie J., Noordermeer I. 1980; Relief of polarity caused by transposon Tn5: application in mapping a cloned region of the Escherichia coli uvrB locus essential for UV resistance. Gene 12:51–61
    [Google Scholar]
  37. Renart J., Reiser J., Stark G. R. 1979; Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proceedings of the National Academy of Sciences of the United States of America 76:3116–3120
    [Google Scholar]
  38. Robinson J. J., Weiner J. H. 1981; The effects of anions on fumarate reductase isolated from the cytoplasmic membrane of Escherichia coli. Biochemical Journal 199:473–477
    [Google Scholar]
  39. Robinson J. J., Weiner J. H. 1982; Molecular properties of fumarate reductase isolated from the cytoplasmic membrane of Escherichia coli. Canadian Journal of Biochemistry 60:811–816
    [Google Scholar]
  40. Shaw K. J., Berg C. M. 1979; Escherichia coli K12 auxotrophs induced by insertion of the transposable element Tn5. Genetics 92:741–747
    [Google Scholar]
  41. Singh A. P., Bragg P. D. 1975; Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coliK12. Biochimica et biophysica acta 396:229–241
    [Google Scholar]
  42. Spencer M. E., Guest J. R. 1974; Proteins of the inner membrane of Escherichia coli: changes in composition associated with anaerobic growth and fumarate reductase amber mutation. Journal of Bacteriology 117:954–959
    [Google Scholar]
  43. Unden G., Kröger A. 1981; The function of the subunits of the fumarate reductase complex of Vibrio succinogenes. European Journal of Biochemistry 120:577–584
    [Google Scholar]
  44. Weiner J. H., Dickie P. 1979; Fumarate reductase of Escherichia coli Elucidation of the covalent flavin component. Journal of Biological Chemistry 254:8590–8593
    [Google Scholar]
  45. Weiner J. H., Lemire B. D., Elmes M. L., Bradley R. D., Scraba D. G. 1984; Overproduction of fumarate reductase in Escherichia coli induces a novel intracellular lipid-protein organelle. Journal of Bacteriology 158:590–596
    [Google Scholar]
  46. Weiner J. H., Cammack R., Cole S. T., Condon C., Honoré N., Lemire B. D., Shaw G. 1986; A novel mutant of Escherichia coli fumarate reductase decoupled from electron transport. Proceedings of the National Academy of Sciences of the United States of America 83:2056–2060
    [Google Scholar]
  47. Yamato I., Anraku Y., Hirosawa K. 1975; Cytoplasmic membrane vesicles of Escherichia coliI. A simple method for preparing the cytoplasmic and outer membranes. Journal of Biochemistry 77:705–718
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-3-597
Loading
/content/journal/micro/10.1099/00221287-133-3-597
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error