1887

Abstract

SUMMARY: grows within the temperature range 40–70 °C in a complex medium that contains 115 μ-Ca and 95 μ-Mg. The addition of Ca to a final concentration ranging from 2·5 to 10 m stimulated growth at suboptimal and supraoptimal temperatures, extending growth above 70°C, but had no effect on growth within the optimal temperature range. Mg (2·5 m) also stimulated growth although to a lesser extent. Furthermore, 10 m-Mg inhibited growth at temperatures higher than 65°C. This inhibitory effect was relieved by the addition of 2·5 m-Ca. Sr (10 m), which often behaves as a Ca analogue in biological systems, strongly inhibited growth and produced gross morphological alterations in the cells. The inhibitory effect of Sr could also be relieved by addition of Ca.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-3-507
1987-03-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/3/mic-133-3-507.html?itemId=/content/journal/micro/10.1099/00221287-133-3-507&mimeType=html&fmt=ahah

References

  1. Aart P. H. M., Heinen U. J., Lauwers A. M., Heinen W. 1981; Versatility of Bacillus caldolyticus with regard to thermoadaptation and morphology. Mikroskopie 38:265–277
    [Google Scholar]
  2. Arancia G., Belli S., Donelli G., Trovalusci P. 1980; Ultrastructural changes in Escherichia coli grown in divalent cation-deficient medium. Journal of General Microbiology 119:155–164
    [Google Scholar]
  3. Brock T. D. 1967; Life at high temperatures. Science 158:1012–1019
    [Google Scholar]
  4. Daron H. H. 1970; Fatty acid composition of lipid extracts of a thermophilic Bacillus species. Journal of Bacteriology 101:145–151
    [Google Scholar]
  5. Friedman S. M. 1968; Protein-synthesizing machinery of thermophilic bacteria. Bacteriological Reviews 32:27–38
    [Google Scholar]
  6. Guimarães-Motta H., Sande-Lemos M. P., De Meis L. 1984; Energy interconversion in sarcoplasmic reticulum vesicles in the presence of Ca2+ and Sr2+ gradients. Journal of Biological Chemistry 259:8699–8705
    [Google Scholar]
  7. Hasegawa Y., Kawada N., Nosoh Y. 1980; Change in chemical composition of membrane of Bacillus caldotenax after shifting the growth temperature. Archives of Microbiology 126:103–108
    [Google Scholar]
  8. Irwin C. C., Akagi J. M., Himes R. H. 1973; Ribosomes, polyribosomes and deoxyribonucleic acid from thermophilic, mesophilic and psychrophi-lic Clostridia. Journal of Bacteriology 113:252–262
    [Google Scholar]
  9. Ljunger C. 1970; On the nature of the heat resistance of thermophilic bacteria. Physiologia plantarum 23:351–364
    [Google Scholar]
  10. Long W. S., Slayman C. L., Low K. B. 1978; Production of giant cells of Escherichia coli.. Journal of Bacteriology 133:995–1007
    [Google Scholar]
  11. Mermier P., Hasselbach W. 1976; Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum. European Journal of Biochemistry 69:79–86
    [Google Scholar]
  12. Mosley G. A., Card G. L., Koostra W. L. 1976; Effect of calcium and anaerobiosis on the thermostability of Bacillus stearothermophilus.. Canadian Journal of Microbiology 22:468–474
    [Google Scholar]
  13. Olson E. J., Cazort R. J. 1969; Active calcium and strontium transport in human erythrocyte ghosts. Journal of General Physiology 53:311–322
    [Google Scholar]
  14. Ray P. H., White D. C., Brock T. D. 1971a; Effect of temperature on the fatty acid composition of Thermus aquaticus.. Journal of Bacteriology 106:25–30
    [Google Scholar]
  15. Ray P. H., White D. C., Brock T. D. 1971b; Effect of growth temperature on the lipid composition of Thermus aquaticus.. Journal of Bacteriology 108:227–235
    [Google Scholar]
  16. Rogers H. J., Thurman P. F. 1978; Temperature-sensitive nature of the rodB mutation in Bacillus subtilis.. Journal of Bacteriology 133:298–305
    [Google Scholar]
  17. Ryter A., Kellenberger E. 1958; Etude au microscope electronique de plasmas contenant de l’acide désoxyribonucleique. Zeitschrift für Naturforschung 13b:597–605
    [Google Scholar]
  18. Silva M. T. 1984; The use of transmission electron microscopy of ultrathin sections for the characterization of the ultrastructure of normal and damaged bacterial membranes. In Biomembranes; Dynamics and Biology pp 1–36 Burton R. M., Guerra F. C. NATO AS1 series A, Life Sciences 76 Edited by New York: Plenum Press;
    [Google Scholar]
  19. Singleton R., Amelunxen R. E. 1973; Proteins from thermophilic microorganisms. Bacteriological Reviews 37:320–342
    [Google Scholar]
  20. Stähl S. 1978; Calcium uptake by Bacillus megater-ium variants grown at 10 °C to 65 °C. FEMS Microbiology Letters 4:77–81
    [Google Scholar]
  21. Stähl S., Ljunger C. 1976; Calcium uptake by Bacillus stearothermophilus; a requirement for thermophilic growth. FEBS Letters 63:184–187
    [Google Scholar]
  22. Venable J. H., Coggeshall R. 1965; A simplified lead citrate stain for use in electron microscopy. Journal of Cell Biology 25:407–408
    [Google Scholar]
  23. Webb M. 1966; The utilization of magnesium by certain Gram-positive and Gram-negative bacteria. Journal of General Microbiology 43:401–409
    [Google Scholar]
  24. Weerkamp A., Heinen W. 1972; Effect of temperature on the fatty acid composition of the extreme thermophiles, Bacillus caldolyticus and Bacillus caldotenax.. Journal of Bacteriology 109:443–446
    [Google Scholar]
  25. Wisdom C., Welker N. E. 1973; Membranes of Bacillus stearothermophilus: factors affecting protoplast stability and thermostability of alkaline phosphatase and reduced nicotinamide adenine dinucleotide oxidase. Journal of Bacteriology 114:1336–1345
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-3-507
Loading
/content/journal/micro/10.1099/00221287-133-3-507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error